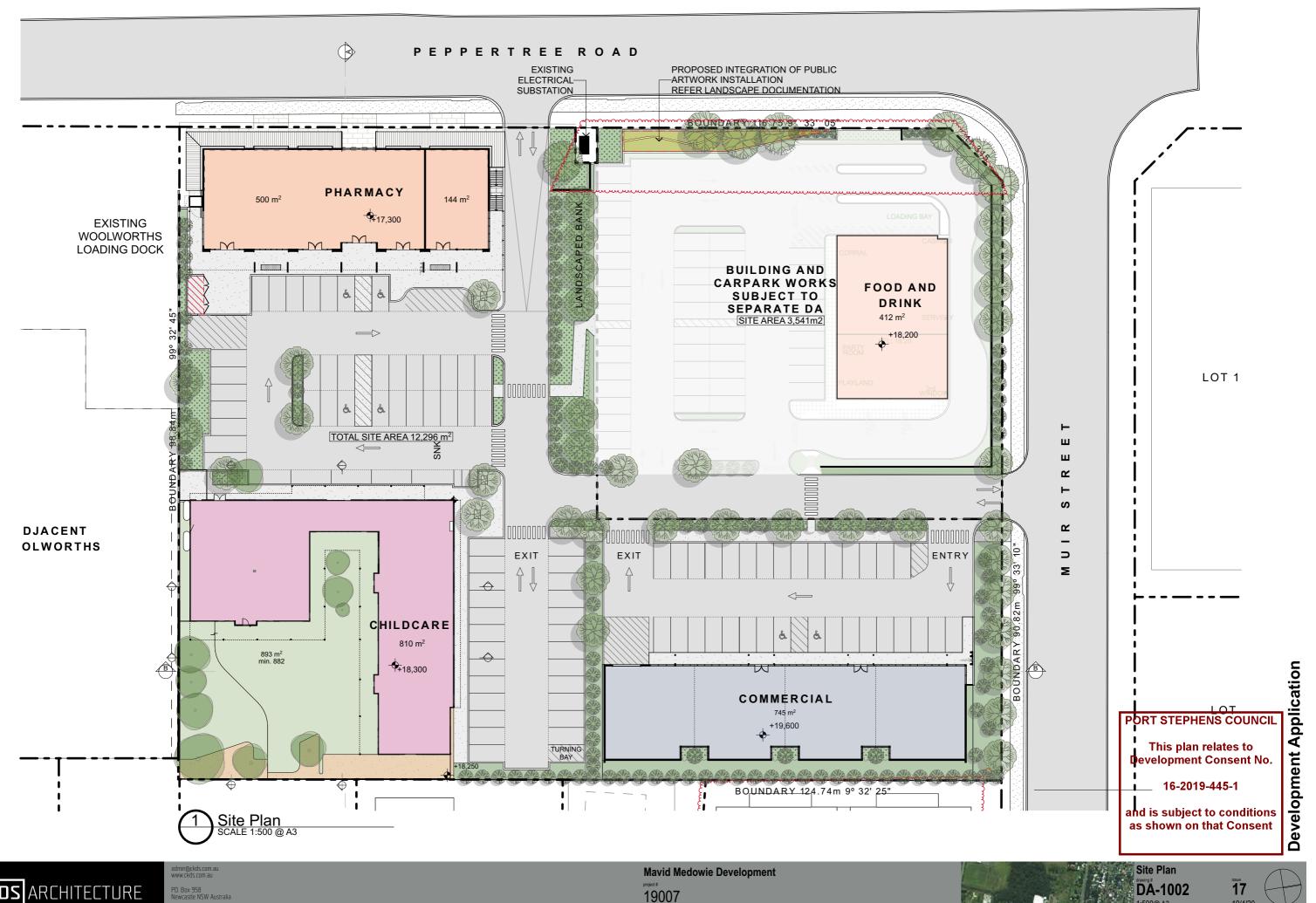
PHARMACY/COMMERCIAL SIGNAGE					
Sign ID	Location	Height	Length	Description	Elevation
S1.1	South Elevation	2,100	6,450	Flush Mounted Panel	
S1.2	West Elevation	2,150	6,413	Flush Mounted Panel	
S1.3	West Elevation	2,100	5,163	Flush Mounted Panel	
S1.3	West Elevation	2,101	5,163	Flush Mounted Panel	
S1.4	West Elevation	2,101	9,135	Flush Mounted Panel	
S1.5	North Elevation	2,101	2,930	Flush Mounted Panel	
\$1.6	North Elevation	600	2,950	Flush Mounted Panel	
S1.7	West Elevation	600	9,155	Flush Mounted Panel	
S1.8	West Elevation	600	5,163	Flush Mounted Panel	
S1.9	West Elevation	600	6,433	Flush Mounted Panel	
S1.10	South Elevation	600	6,520	Flush Mounted Panel	
S1.11	Under Awning- West	400	1,800	Hanging Blade Signage	
S1.12	East Eleavtion	1,600	4,863	Flush Mounted Panel	
S1.13	North Eleavtion	2,200	2,930	Flush Mounted Panel	

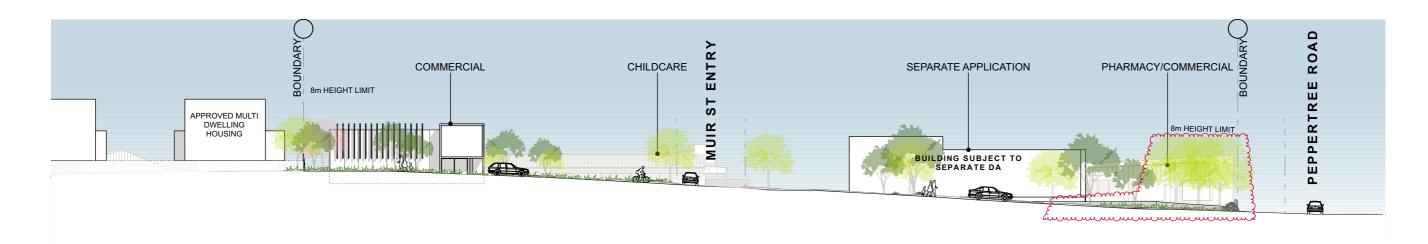
CHILDCARE SIGNAGE					
Sign ID	Location	Height	Length	Description	Elevation
S2.1	West Elevation	2,000	5,140	Flush Mounted Panel	
S2.2	West Elevation	2,000	2,240	Flush Mounted Panel	

COMMERCIAL SIGNAGE					
Sign ID	Location	Height	Length	Description	Elevation
S3.1	West Elevation	1,600	3,700	Flush Mounted Panel	
\$3.2	West Elevation	3,350	3,750	Flush Mounted Panel	
\$3.3	North Elevation	3,350	4,425	Flush Mounted Panel	

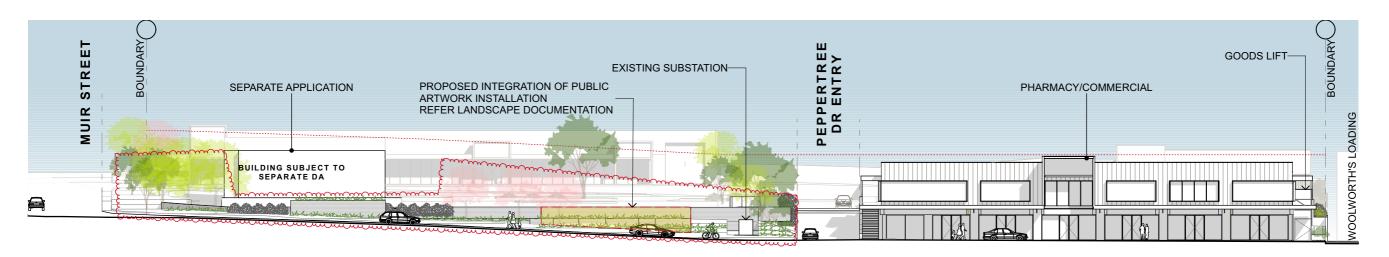

This plan relates to **Development Consent No.**

16-2019-445-1

and is subject to conditions as shown on that Consent

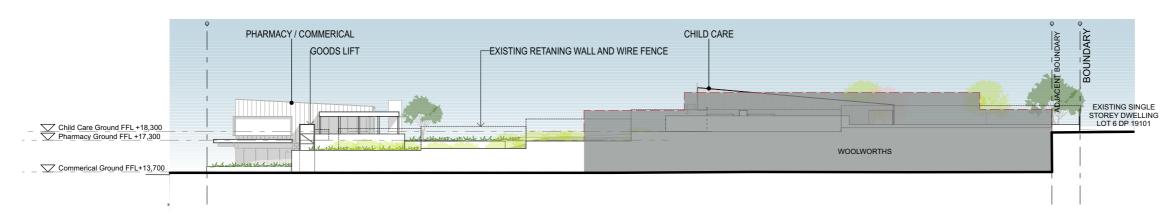

CKDS ARCHITECTURE

Ph 02 4321 0503 ACN 129 231 269

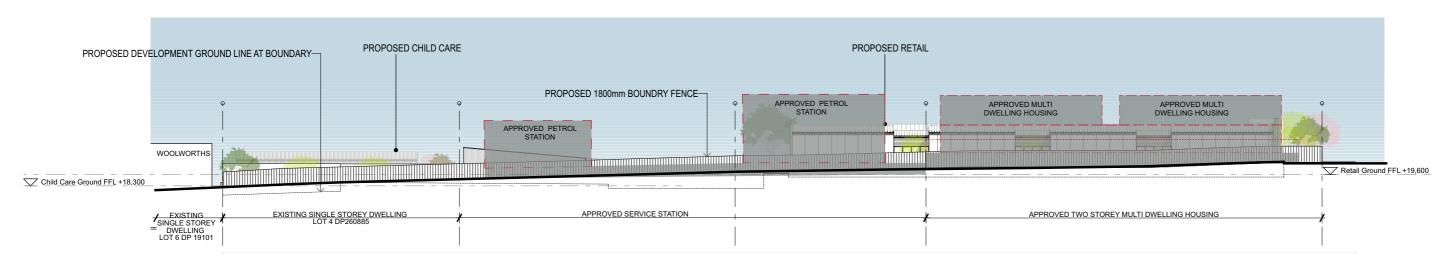

795 Medowie Rd, Medowie, 2318 NSW

19/4/20

Peppertree Rd Elevation SCALE 1:400 @ A3


P.O. Box 958 Newcastle NSW Australia

PORT STEPHENS COUNCIL


This plan relates to **Development Consent No.**

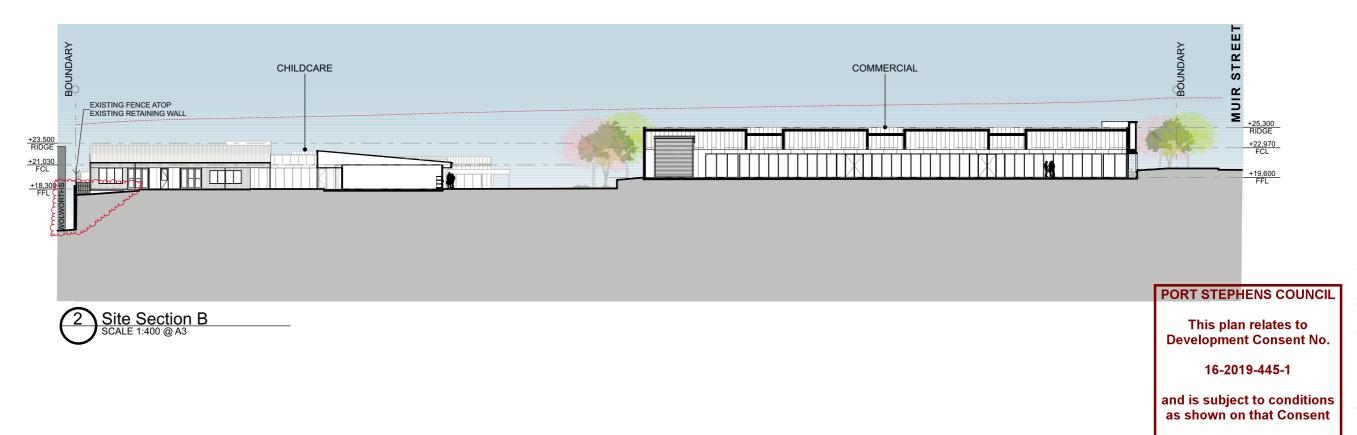
16-2019-445-1

and is subject to conditions as shown on that Consent

This plan relates to Development Consent No.

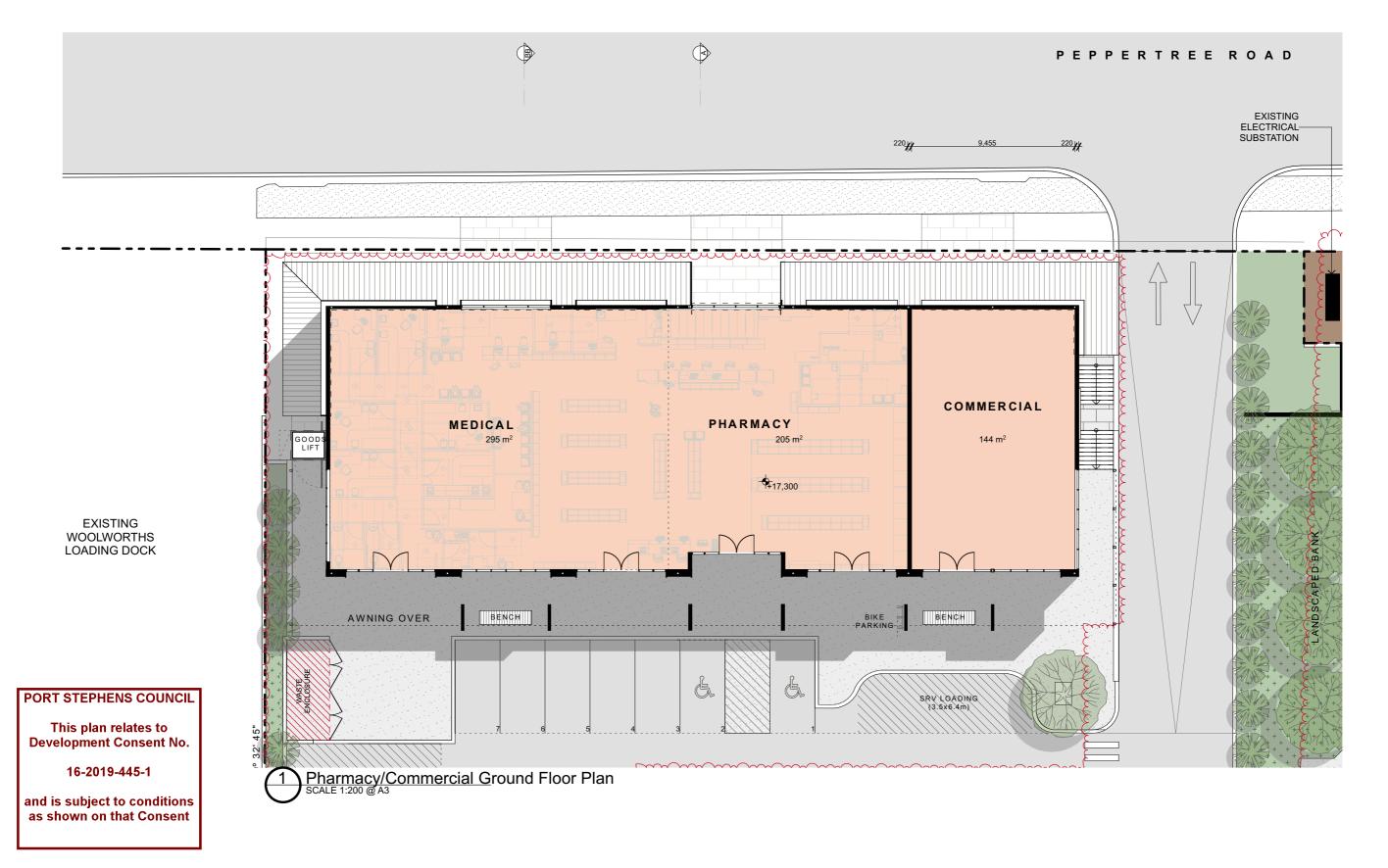
16-2019-445-1

and is subject to conditions as shown on that Consent



01

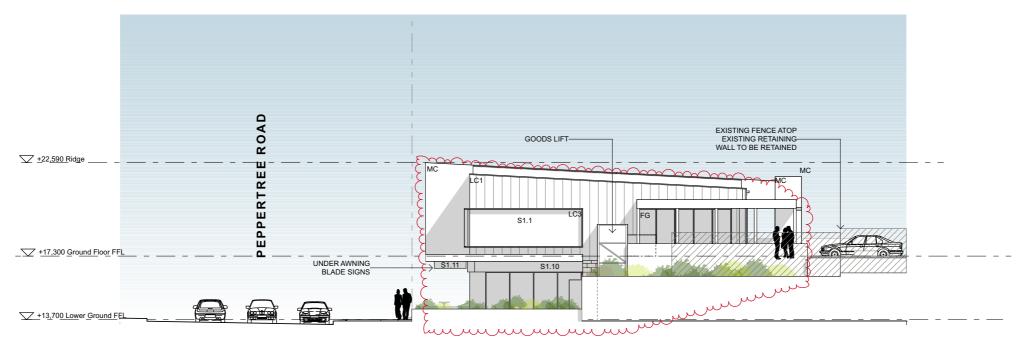
8/4/20



Development Application

Development Application

DA-1101 15 1:200@ A3 8/4/20



P.O. Box 958 Newcastle NSW Australia

Mavid Medowie Development 19007 795 Medowie Rd, Medowie, 2318 NSW

Pharmacy/Commercial South Elevation SCALE 1:200 @ A3

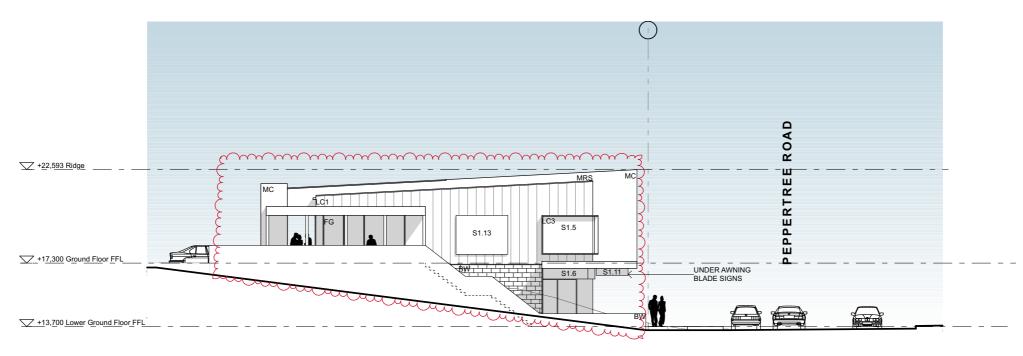
Pharmacy/Commercial West Elevation SCALE 1:200 @ A3

PORT STEPHENS COUNCIL

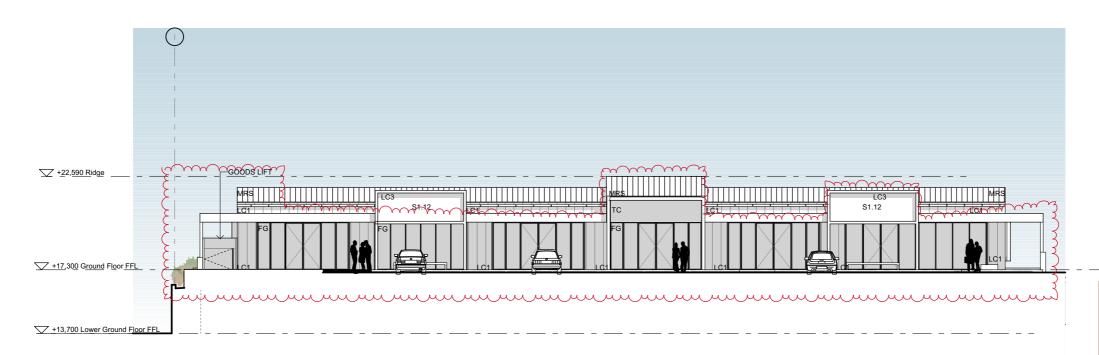
This plan relates to Development Consent No.

16-2019-445-1

and is subject to conditions as shown on that Consent


CKDS ARCHITECTURE

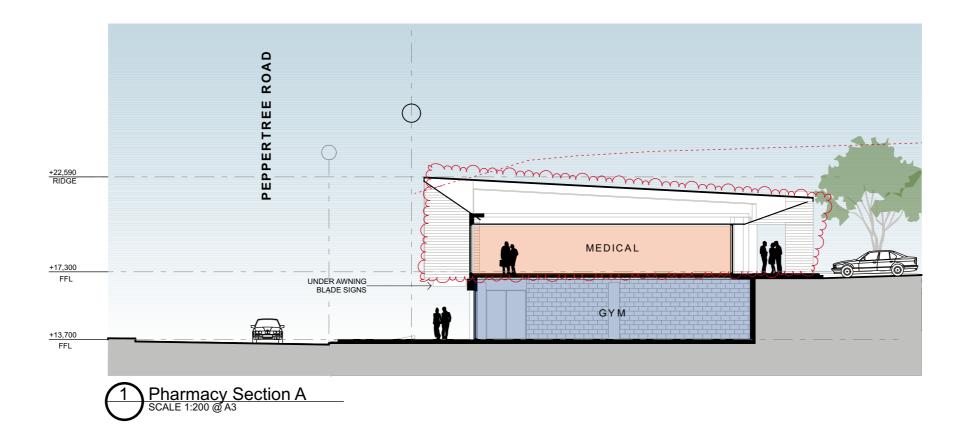
PD. Box 958
Newcastle NSW Austra
Ph. 02.4321, 0503

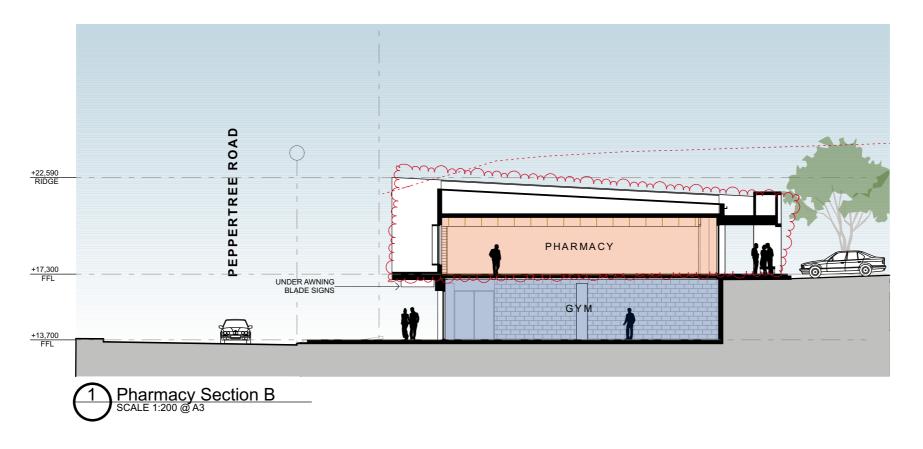

Mavid Medowie Development
19007
795 Medowie Rd, Medowie, 2318 NSW

Pharmacy Elevations 1

Pharmacy/Commercial East Elevation
SCALE 1:200 @ A3

PORT STEPHENS COUNCIL


This plan relates to Development Consent No.


16-2019-445-1

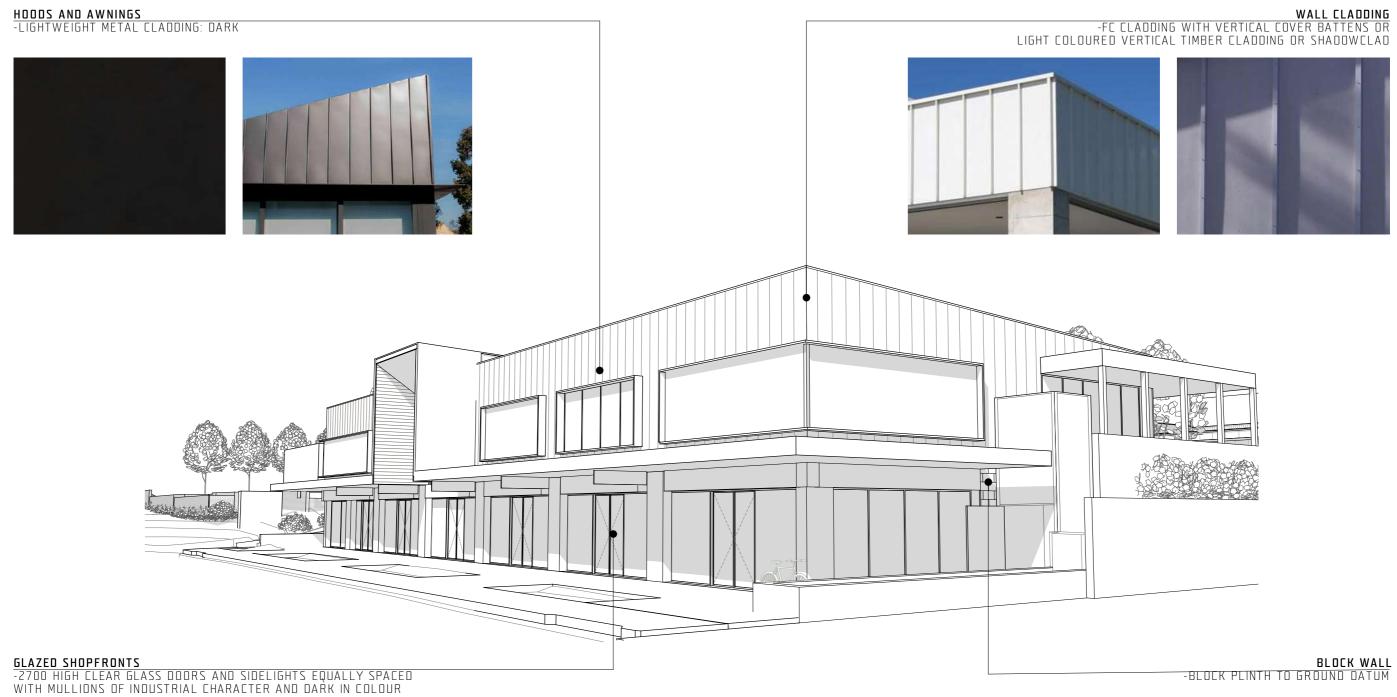
and is subject to conditions as shown on that Consent

CKDS ARCHITECTURE

Mavid Medowie Development 19007

This plan relates to Development Consent No.

16-2019-445-1


and is subject to conditions as shown on that Consent

CKDS ARCHITECTURE

Mavid Medowie Development 19007

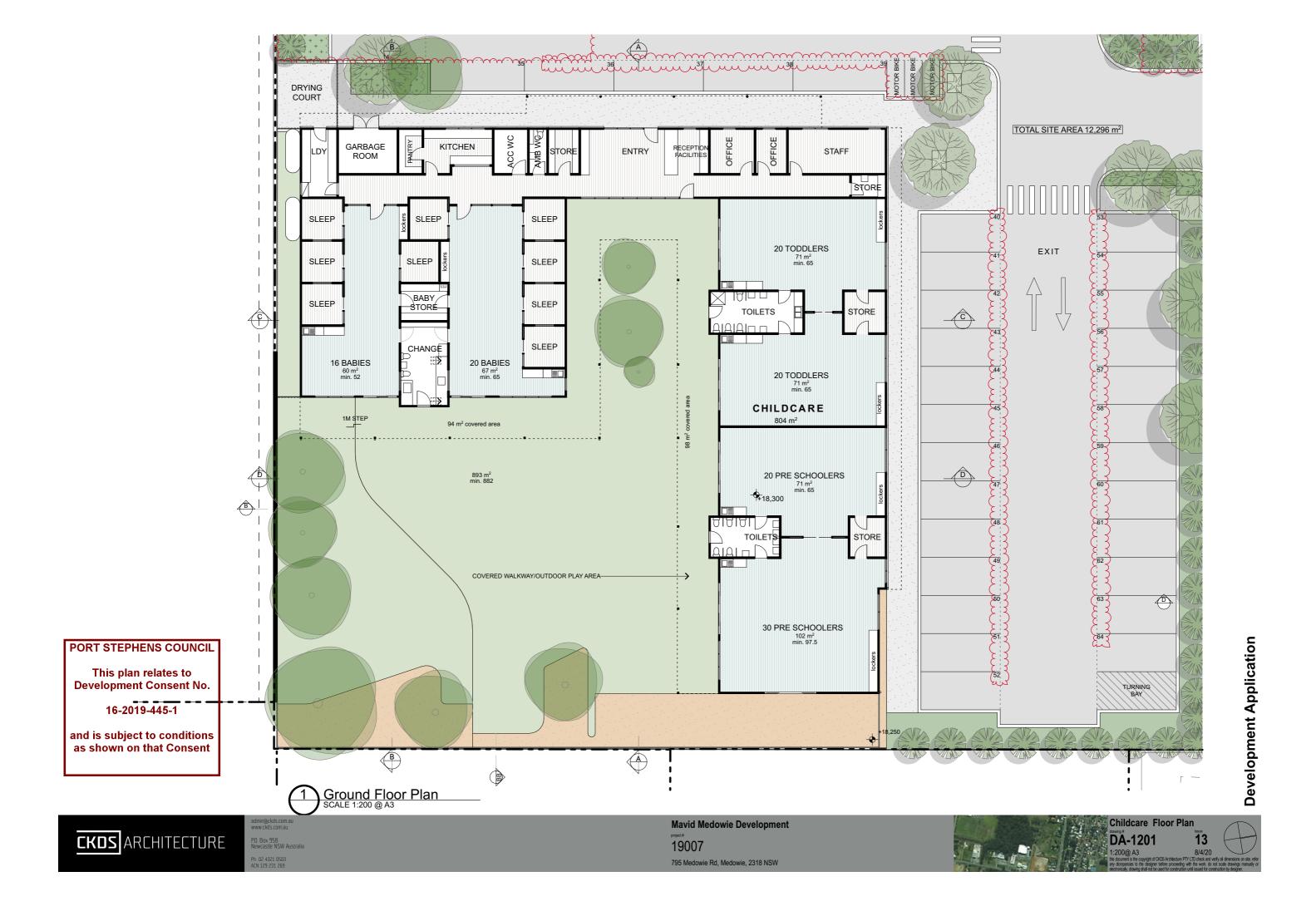
Pharmacy/Commercial Viewed from Peppertree Rd

PORT STEPHENS COUNCIL

This plan relates to **Development Consent No.**

16-2019-445-1

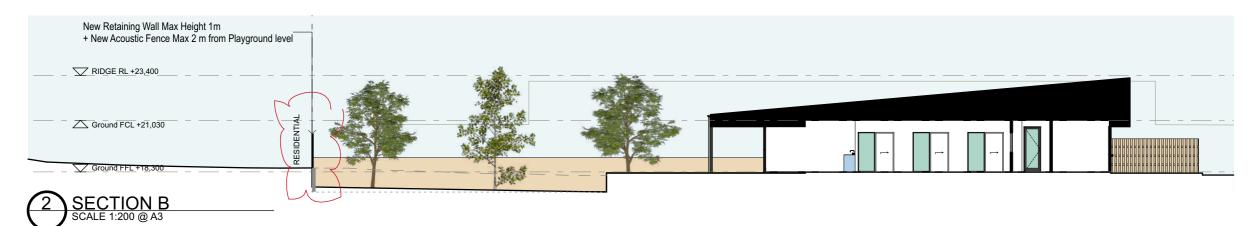
and is subject to conditions as shown on that Consent


CKDS ARCHITECTURE

Mavid Medowie Development

19007

795 Medowie Rd, Medowie, 2318 NSW



Development Application

795 Medowie Rd, Medowie, 2318 NSW

This plan relates to **Development Consent No.**

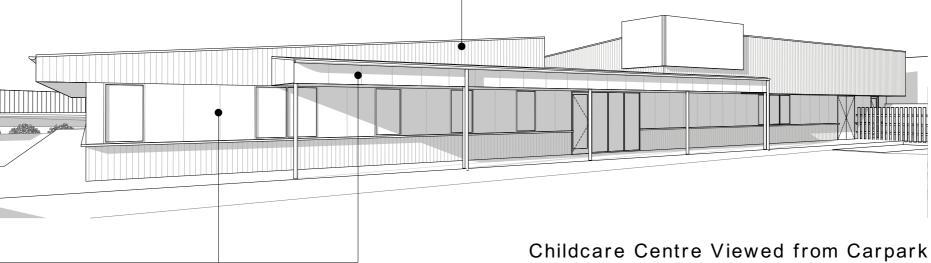
16-2019-445-1

and is subject to conditions as shown on that Consent

CKDS ARCHITECTURE

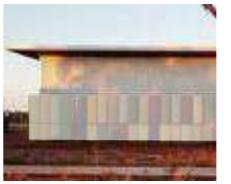
SECTION D SCALE 1:200 @ A3

P.O. Box 958 Newcastle NSW Australia


Ph 02 4321 0503 ACN 129 231 269

Mavid Medowie Development

795 Medowie Rd, Medowie, 2318 NSW



WALL CLADDING Z
-FC CLADDING WITH VERTICAL JOINT LINES PAINTED

PORT STEPHENS COUNCIL

This plan relates to Development Consent No.

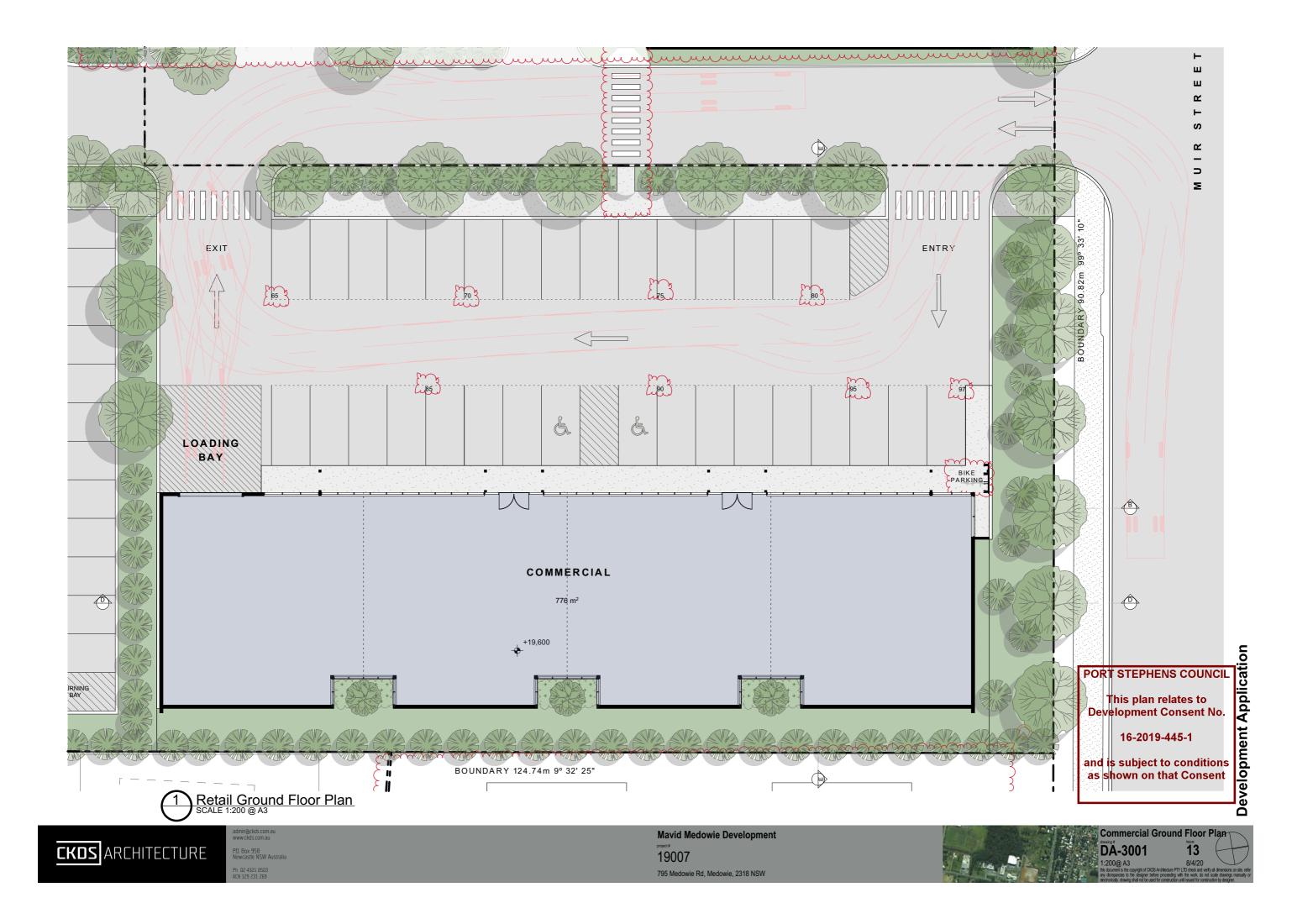
16-2019-445-1

and is subject to conditions as shown on that Consent

CKDS ARCHITECTURE

P.O. Box 958 Newcastle NSW Australia Mavid Medowie Development

19007


795 Medowie Rd, Medowie, 2318 NSW

Childcare Materiality

DA-1205 08

08 6/11/19 S Architecture PTY LID thetek and verify all dimensions

Commercial North Elevation SCALE 1:200 @ A3

PORT STEPHENS COUNCIL

This plan relates to **Development Consent No.**

16-2019-445-1

and is subject to conditions as shown on that Consent

P.O. Box 958 Newcastle NSW Australia Ph 02 4321 0503 ACN 129 231 269

Commercial South Elevation SCALE 1:200 @ A3

Mavid Medowie Development 19007

Commercial East Elevation SCALE 1:200 @ A3

PORT STEPHENS COUNCIL

This plan relates to Development Consent No.

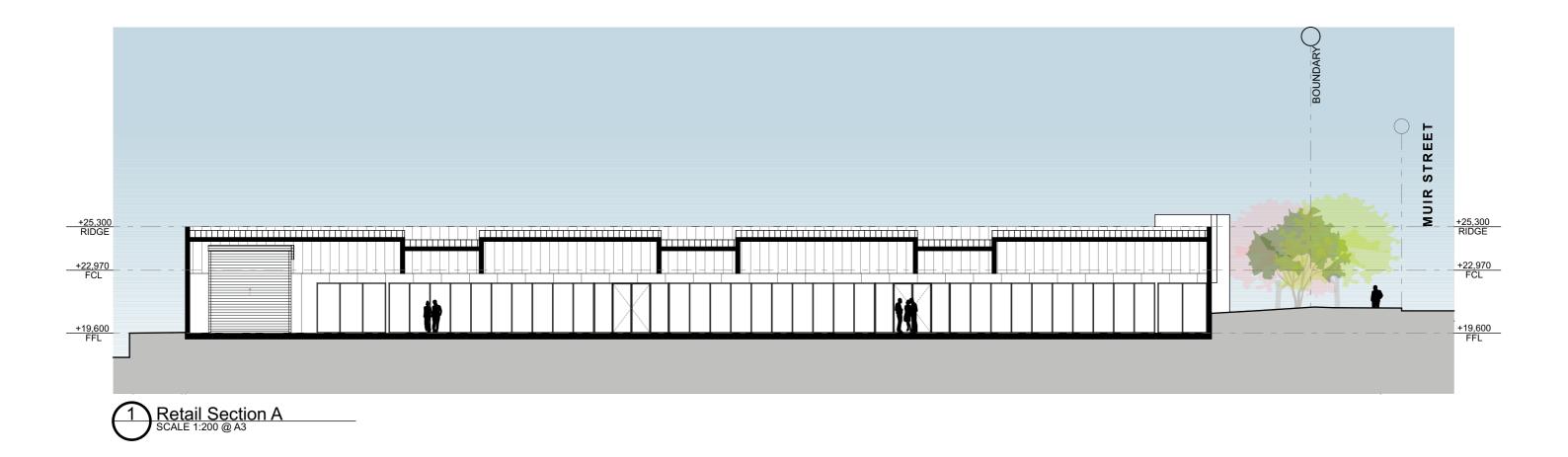
16-2019-445-1

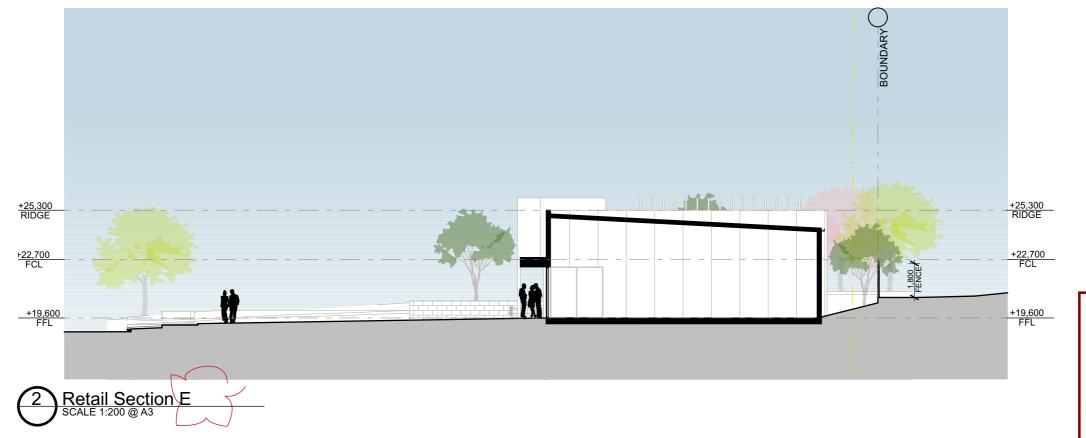
and is subject to conditions as shown on that Consent

CKDS ARCHITECTURE

Mavid Medowie Development

19007


795 Medowie Rd, Medowie, 2318 NSW



Commercial Elevations 2

DA-3005

6/11/19

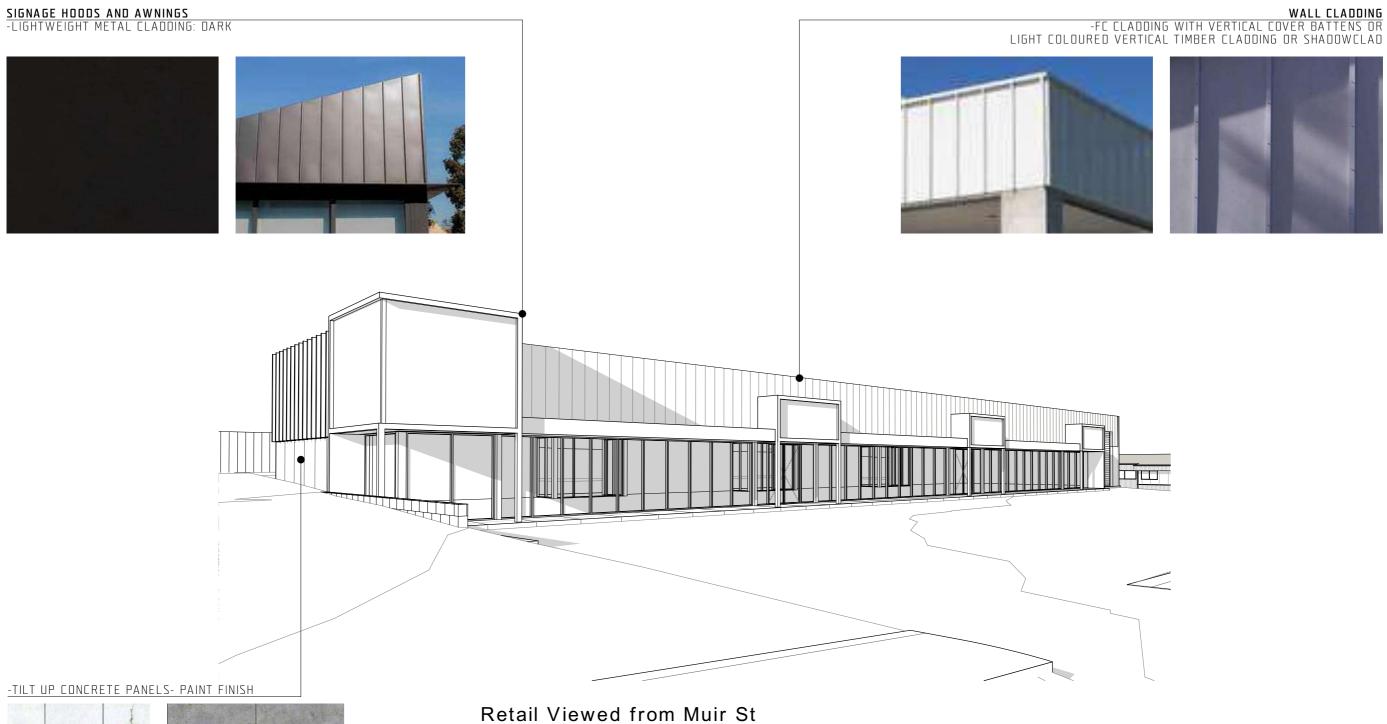
This plan relates to Development Consent No.

16-2019-445-1

and is subject to conditions as shown on that Consent

CKDS ARCHITECTURE

P.O. Box 958 Newcastle NSW Australia

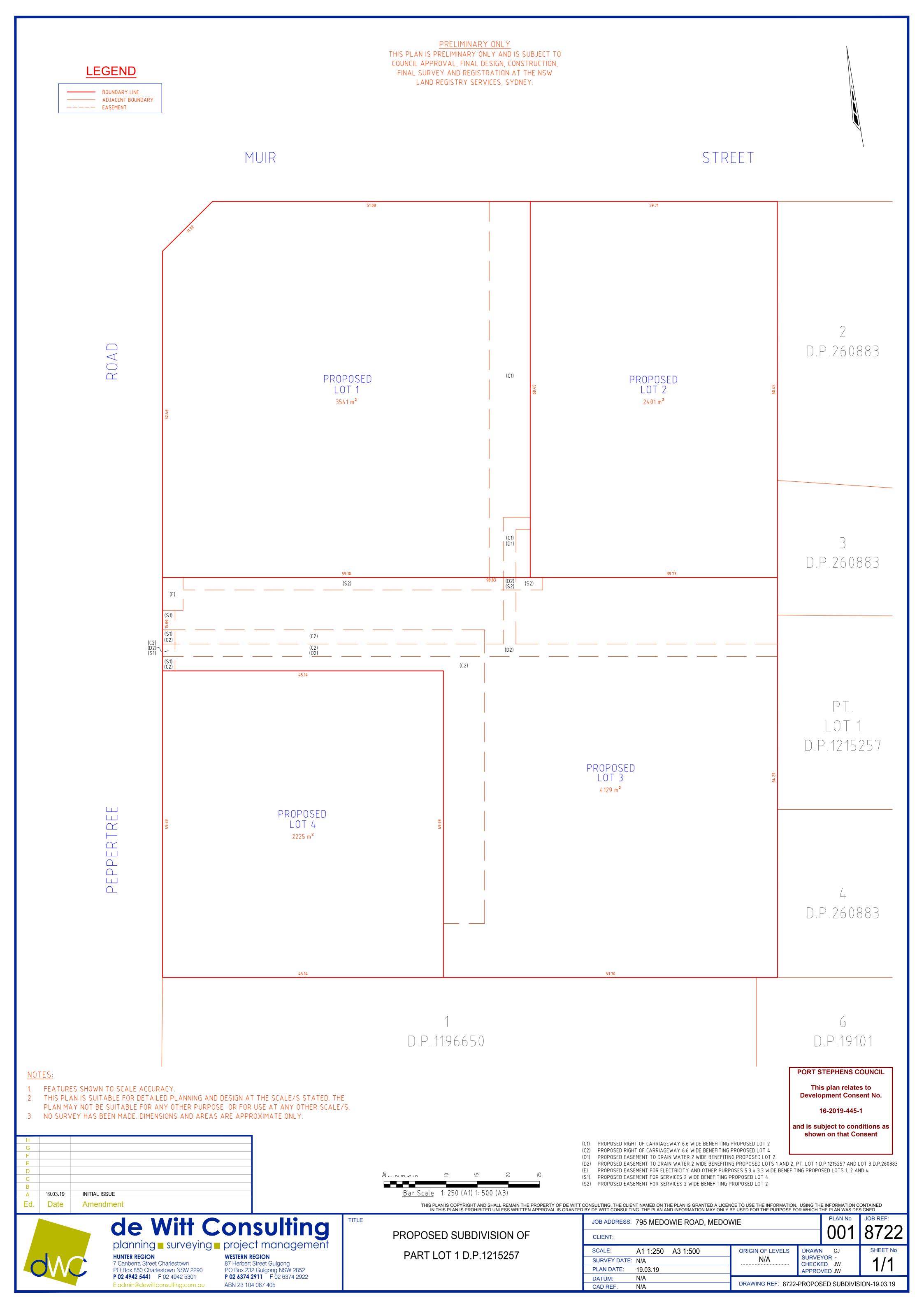

Ph 02 4321 0503 ACN 129 231 269 Mavid Medowie Development 19007

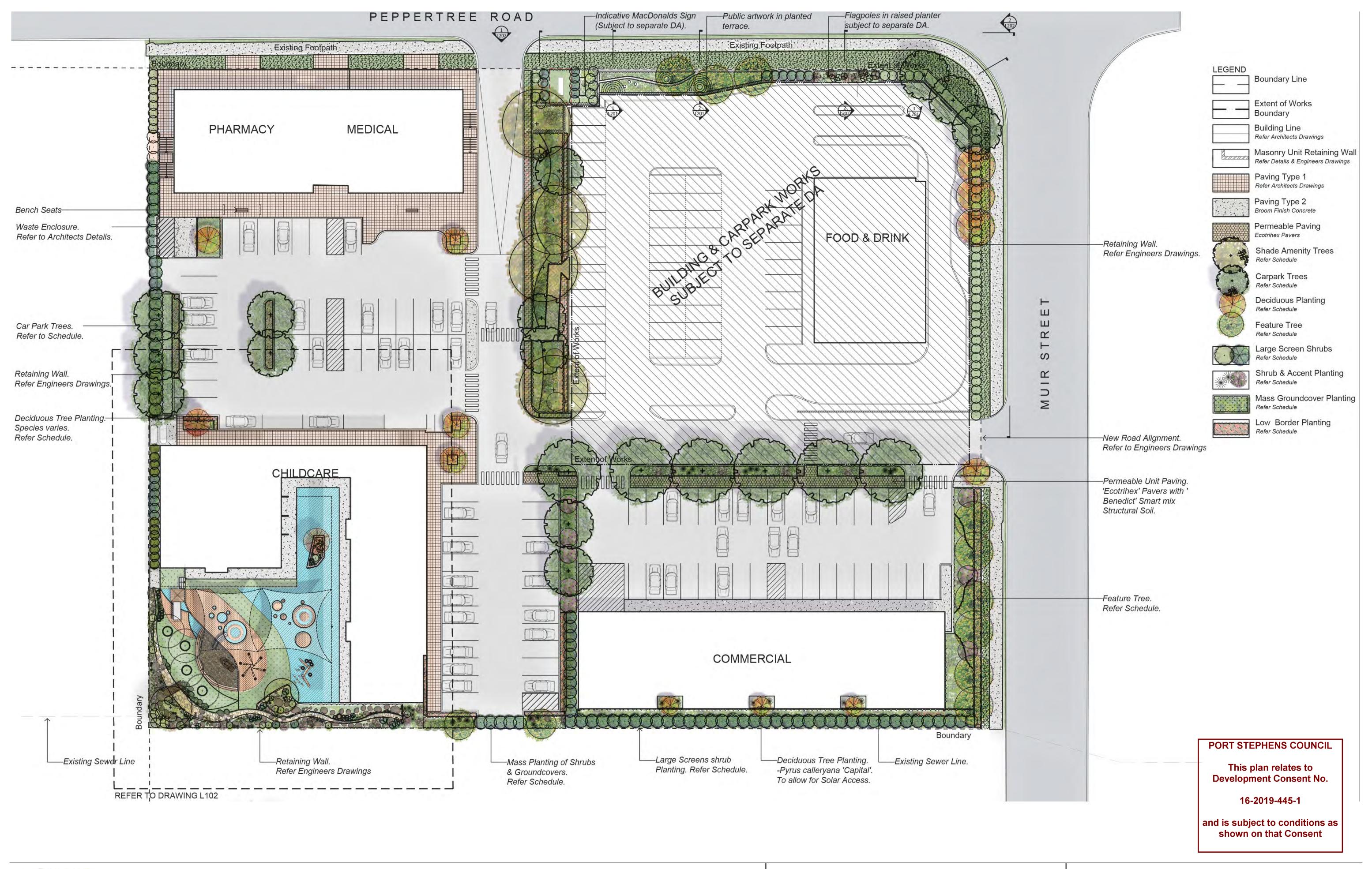
Commercial Sections
DA-3006
1:200@ A3

issue
11
19/4/20
DS Architecture PTY LTD check and verify all director proceeding with the work, do not scale.

This plan relates to **Development Consent No.**

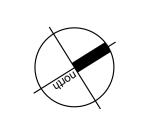
16-2019-445-1


and is subject to conditions as shown on that Consent


CKDS ARCHITECTURE

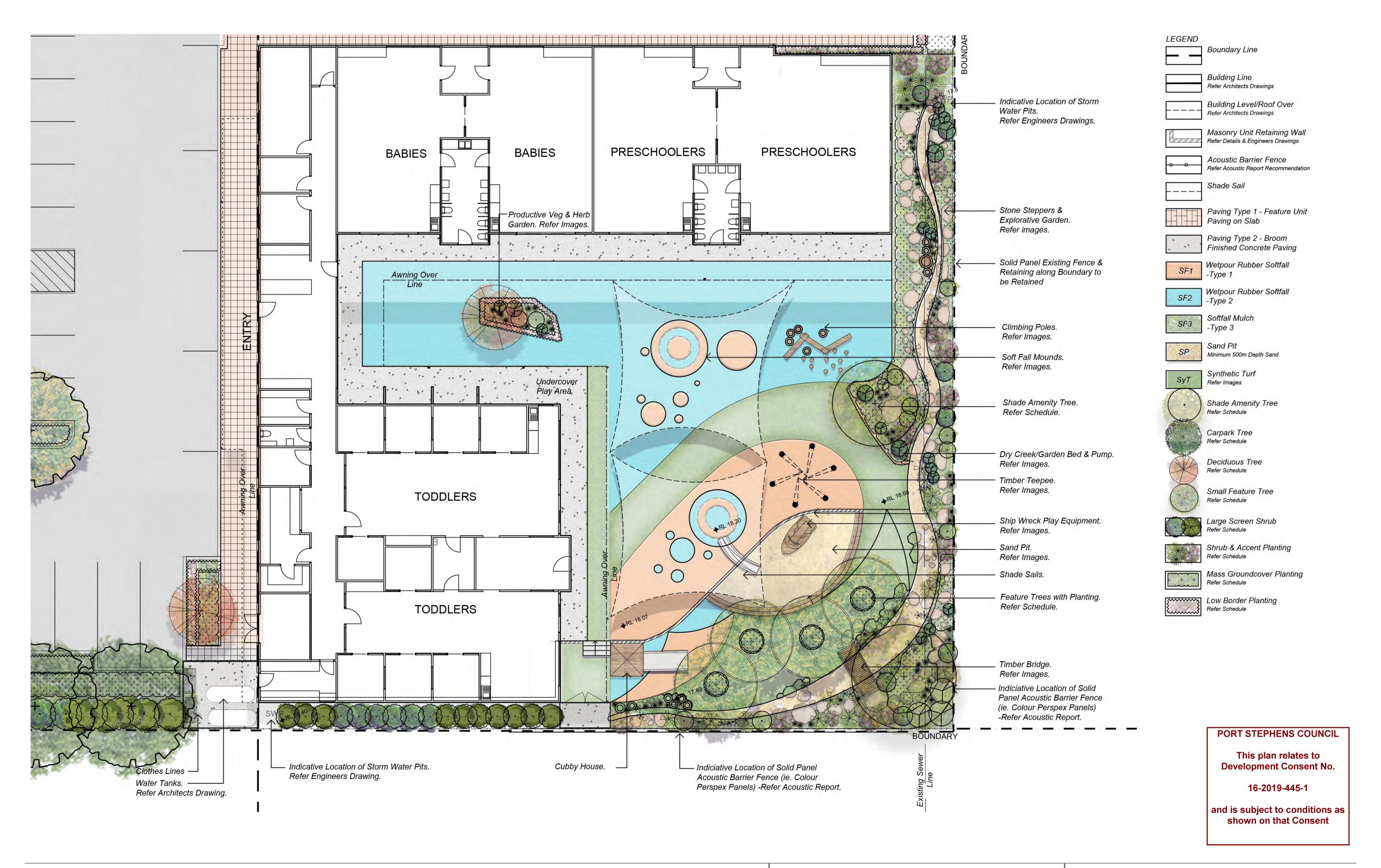
Mavid Medowie Development 19007

DA-3007



MAVID MIXED USE DEVELOPMENT 795 MEDOWIE ROAD, MEDOWIE, NSW, 2318 DRAWING NAME

OVERALL LANDSCAPE PLAN


CLIENT MAVID GROUP
PROJECT NO 19024

REVISION G
DATE 20.04.2020

0 2 5 10 15

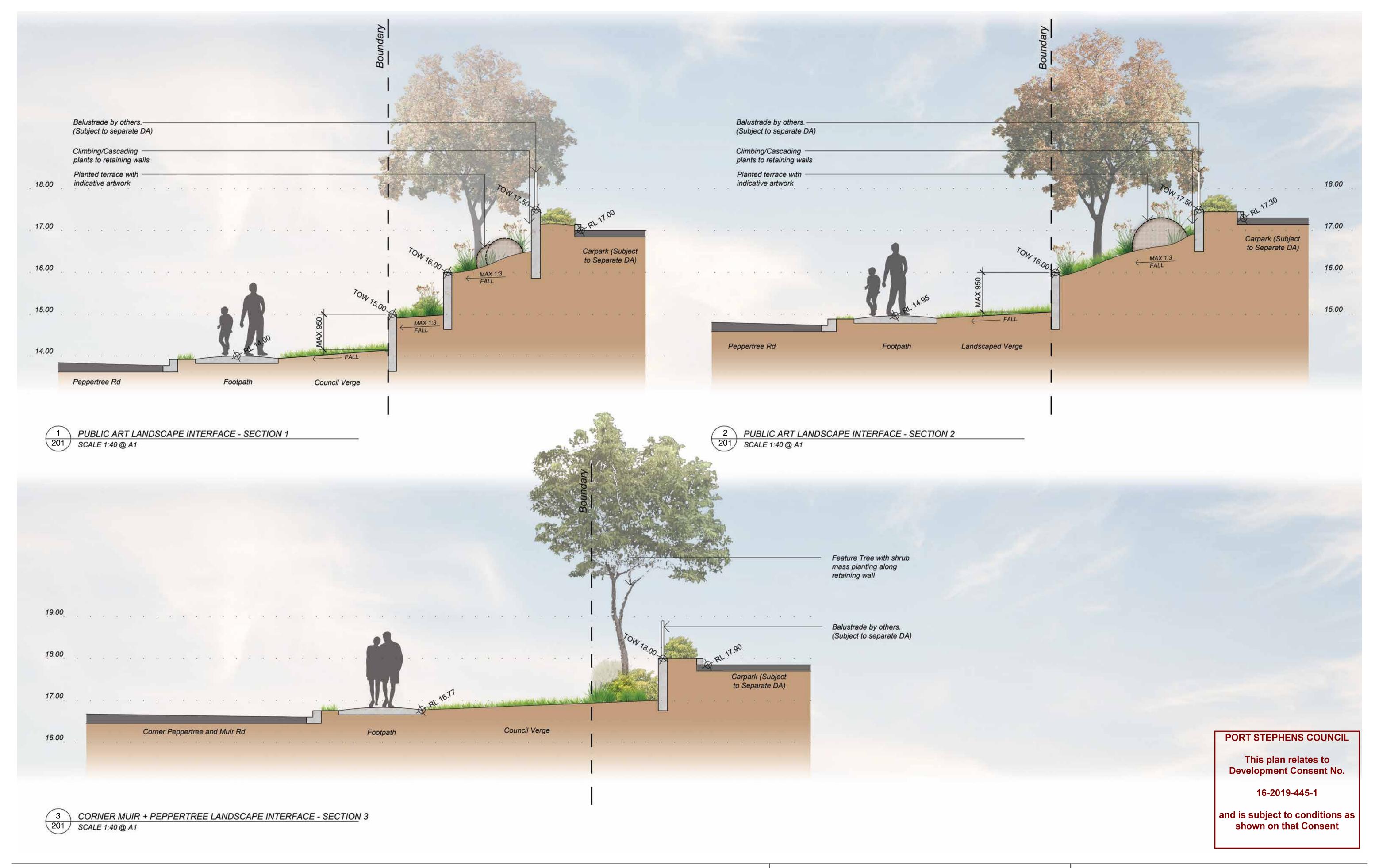
DRAWING NO L101

SCALE 1:500 @ A1

MAVID MIXED USE DEVELOPMENT

795 MEDOWIE ROAD, MEDOWIE, NSW, 2318

CHILDCARE LANDSCAPE PLAN


DRAWING NAME

AN

CLIENT MAVID GROUP
PROJECT NO 19024

REVISION E

DATE 08.04.2020

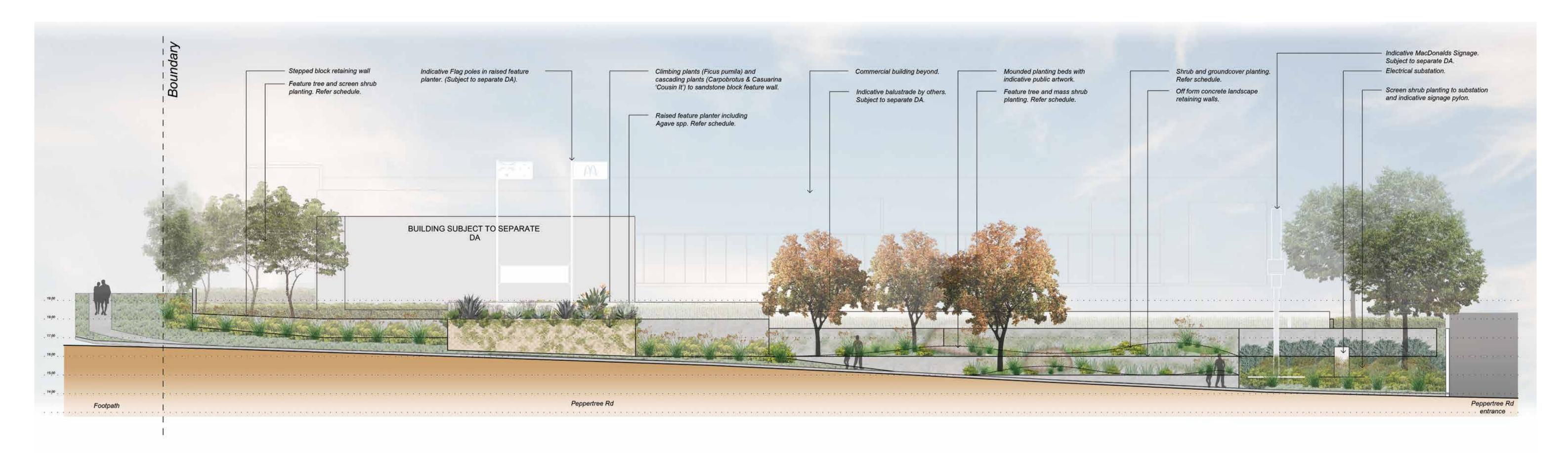
MAVID MIXED USE DEVELOPMENT 795 MEDOWIE ROAD, MEDOWIE, NSW, 2318

LANDSCAPE SECTIONS 01

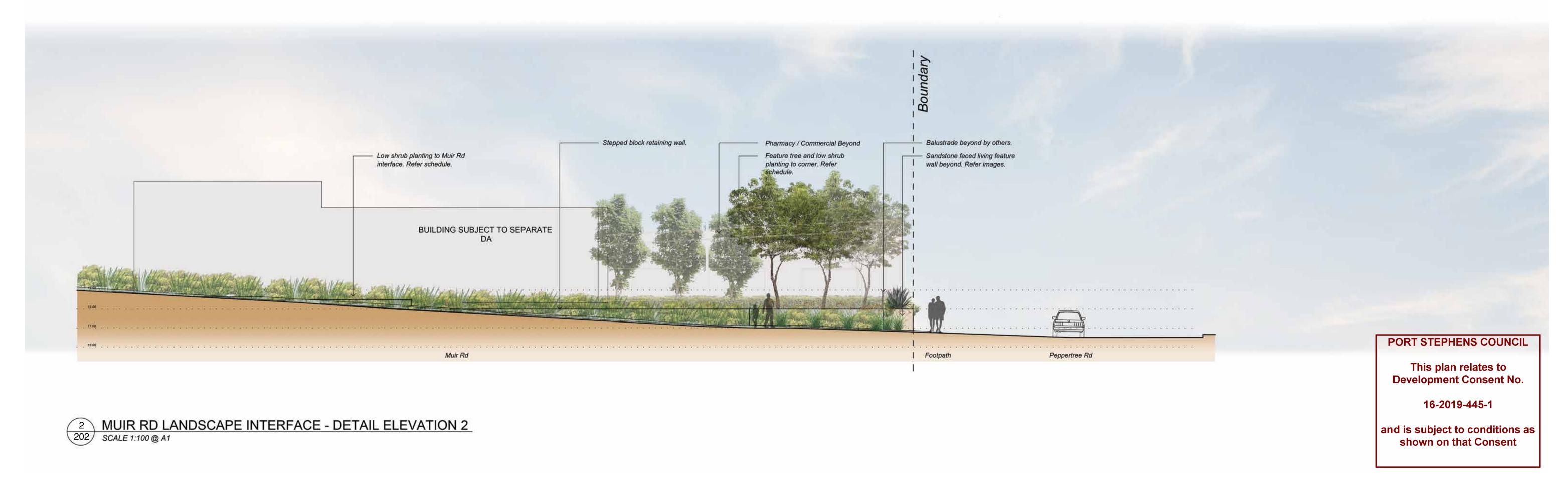
DRAWING NAME

CLIENT MAVID GROUP

ROJECT NO 19024


PROJECT NO 19024

DRAWING NO L201


SCALE 1:40 @ A1

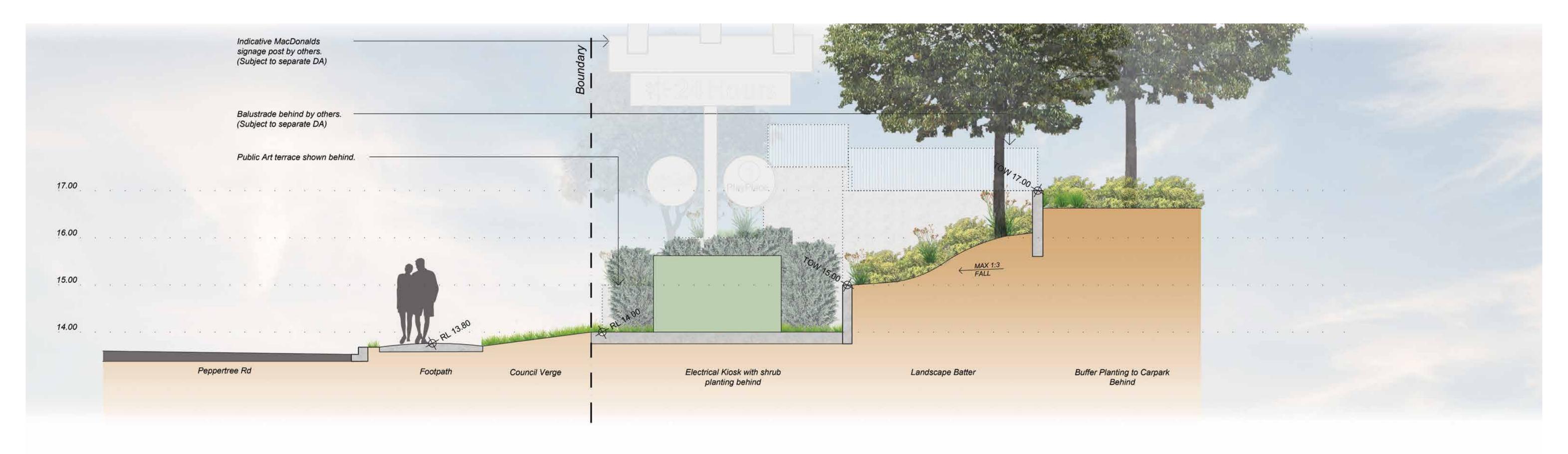
REVISION B

DATE 20.04.2020

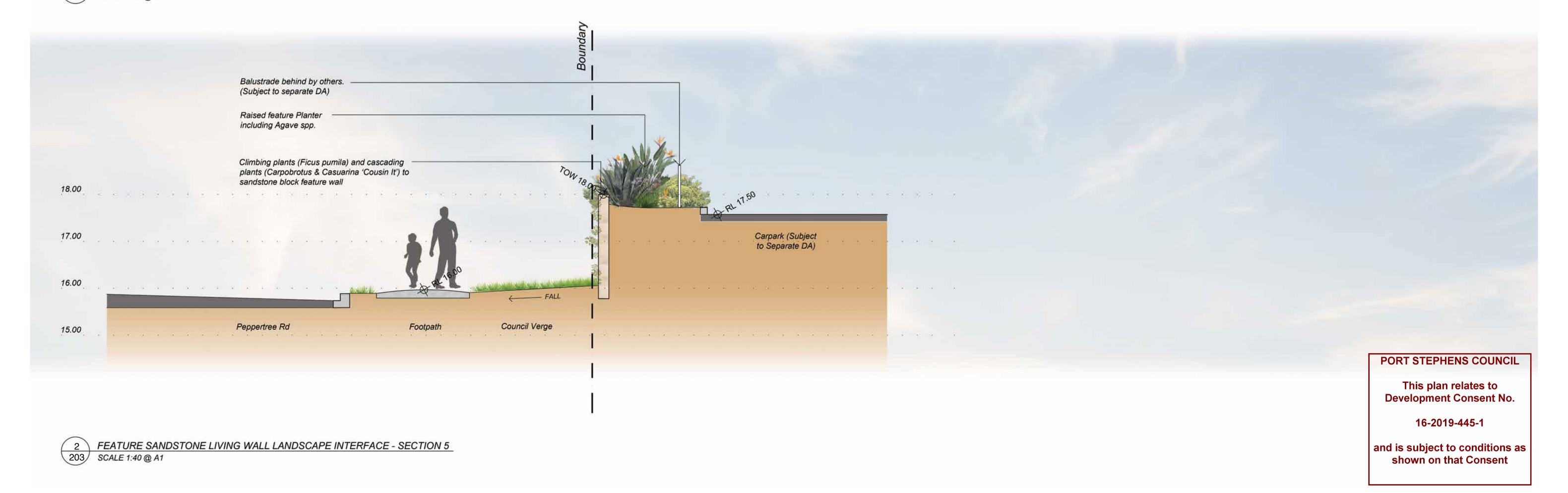
1 PEPPERTREE RD LANDSCAPE INTERFACE - DETAIL ELEVATION 1
202 SCALE 1:100 @ A1

MAVID MIXED USE DEVELOPMENT 795 MEDOWIE ROAD, MEDOWIE, NSW, 2318 DRAWING NAME

LANDSCAPE SECTIONS 02


CLIENT MAVID GROUP
PROJECT NO 19024

DRAWING NO L202


SCALE 1:100 @ A1

REVISION B

DATE 20.04.2020

MAVID MIXED USE DEVELOPMENT 795 MEDOWIE ROAD, MEDOWIE, NSW, 2318 DRAWING NAME

LANDSCAPE SECTIONS 03

CLIENT MAVID GROUP
PROJECT NO 19024

PROJECT NO 19024

DRAWING NO L203

SCALE 1:40 @ A1

REVISION A

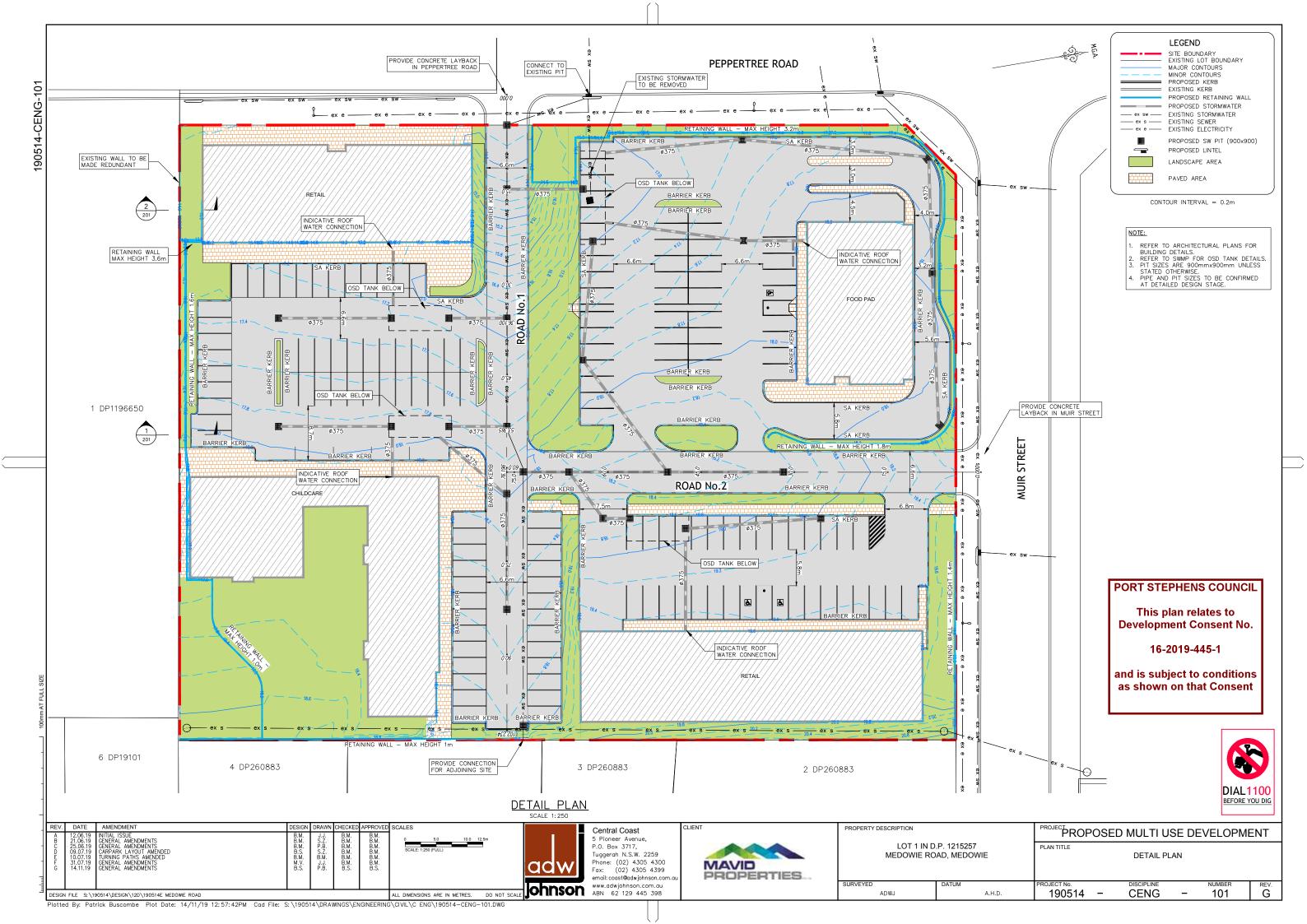
DATE 20.04.2020

Image	Botanical Name	Common Name	Mature Height _(m.)	Mature Spread (m.)		Comments
Car Park T	rees					
01	Cupaniopsis anacardioides	Tuckeroo	8	7	75L	Stakes and tie
	Lophostemon confertus	Queensland Brush Box	18	10	75L	Stakes and tie
	Melaleuca atypheloides	Prickly Paper Bark	10	8	75L	Stakes and tie
Shade Am	enity Trees					
02	Alloxylon flammeum	Tree Waratah	15	6-8	75L	Stakes and ti
	Corymbia gummifera	Red Bloodwood	20	18	75L	Stakes and tie
	Corymbia maculata	Spotted Gum	25	18	75L	Stakes and tie
	Waterhousia 'Sweeper'	Weeping Lilly Pilly	10	7	75L	Stakes and tie
Deciduous	s Trees					
03	Lagerstroemia indica x L. fauriei	Crepe Myrtle	4	3	75L	Stakes and tie
04	Pyrus calleryana 'Capital'	Ornamental Pear	10	2.5	75L	Stakes and tie
Small Foot	turo Troco					
Small Feat	Callestemon citrinus	Crimson Bottle Brush	3	3	45L	
05	Corymbia ficifolia 'Orange Splendour'	Dwarf Flowering Gum	6	4-6	45L	Stakes and tie
	Elaeocarpus reticulatus	Blueberry Ash	10	5	45L	Stakes and tie
	Tristaniopsis 'Luscious'	Luscious Water Gum	8	5	75L	Stakes and tie
Tall Carea	o Olemaka v 4 Eme					
1all Screet	n Shrubs > 1.5m Banksia robur	Swamp Banksia	2	2	300mm	
07	Breynia cernua 'Ironstone Range'	Coffee Bush	2	1.5	300mm	
07	Grevillea 'Honey Gem'	Spider Flower Grevillea	4	3	300mm	
	Leucospermum cordifolium	opido: Notion di ovinica			000111111	
08	'Scarlet Ribbon'	Scarlet Ribbon	2	1.5	300mm	
09	Syzigium australe 'Pinnacle'	Pinnacle Narrow Lilly Pilly	7.5	1.5	300mm	
Shrubs < 1	1.5m					
10	Beschorneria yuccoides	Mexican Lily	1.5	1	200mm	
11	Callistemon 'Better John'	Better John Bottlebrush	1.2	0.9	200mm	
	Grevillea 'Crimson Villa'	Crimson Villa	0.7	0.7	200mm	
12 13	Raphiolepis indica 'Ápple Blossom' Westringia fruiticosa 'Zena'	Apple Blossom Hawthorn Westringia 'Zena'	1 1.2	1 1.2	200mm 200mm	
Mara Diagram						
Mass Plan	ted Groundcovers Alternanthera dentata 'Little Ruby'	Littly Ruby	0.5	0.5	140mm	
15	Convolvulus cneorum	Silver Bush	0.5	1	140mm	
10	Dianella caerulea 'Little Jess'	Little Jess Flax Lily	0.4	0.4	140mm	
16	Dichondra repens	Kidney Weed	0.1	1.5	100mm	
17	Liriope muscari 'Isabella'	Isabella Fine Leaf Liriope	0.4	0.5	140mm	
.,	Myoporum parvifolum Ýareena'	Yareena Creeping Boobialla	0.1	1	140mm	
18	Neomarica gracilis	Walking Iris	0.5	0.5	140mm	
19	Stachys byzantina	Lambs Ears	0.5	0.5	140mm	
20	Westringia 'Mundi'	Westringia 'Mundi'	0.6	1.5	140mm	
Low Borde	er Planting					
	Carex albula 'Frosted Curls'	New Zealand Hair Sedge	0.6	0.6	140mm	
21	Chrysocephalum apiculatum 'Desert Flame'		0.5	0.3	140mm	
22	Lomandra confertifolia 'Wingarra' Viola hederacea	Lomandra Wingarra Native Violet	0.4 0.1	0.6 0.3	140mm 140mm	
0 = ::			J.,			
Cascading	ן Planting Casuarina glauca 'Cousin It'	Cousin It	0.3	1	140mm	
	Hardenbergia violacea 'Meema'	Meema Snake Vine	0.5	2	140mm	
	Rosmarinus officinalis 'Blue Lagoon'	Blue Lagoon Rosemary	0.3	1	140mm	
Shade Tole	erant Planting					
23	Asplenium australasicum	Birds Nest Fern	1	1	140mm	
	Macrozamia communis	Burrawang	1	1.5	140mm	
24	Philodendron 'Xanadu'	Xanadu Dwarf Philodendron	0.8	0.8	140mm	
	Pteris tremula	Tender Brake	1	0.8	140mm	
Climbers						
25	Cissus antartica	Kangaroo Vine	6		140mm	
	PHENS COUNCIL					

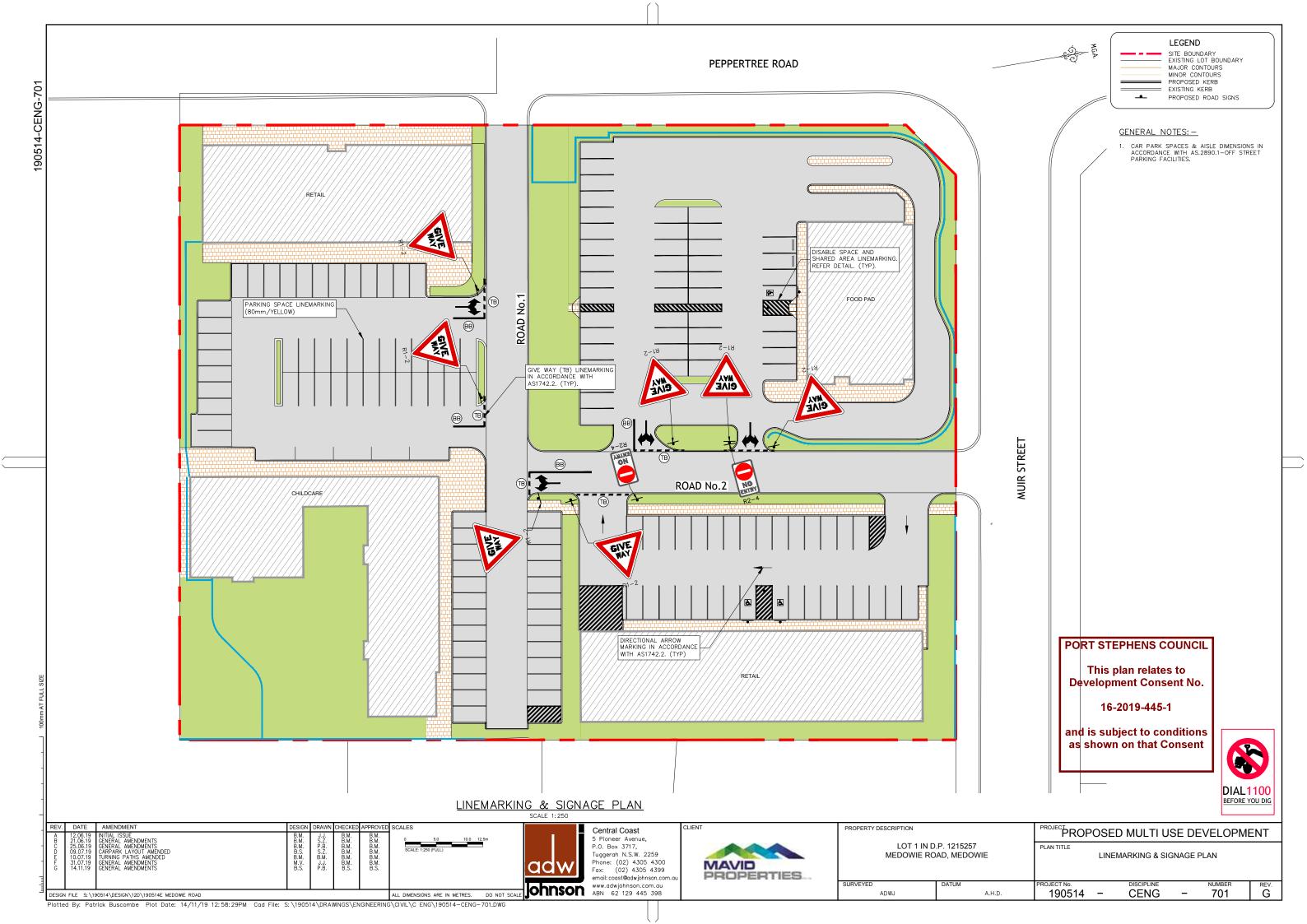
This plan relates to Development Consent No.

16-2019-445-1

and is subject to conditions as shown on that Consent


xeriscapes

MAVID MIXED USE DEVELOPMENT


DRAWING NAME INDICATIVE PLANT SCHEDULE

CLIENT MAVID GROUP PROJECT NO 19024 DRAWING NO L301 SCALE NA

REVISION B **DATE** 08.04.2020

Engineering

ADW JOHNSON PTY LIMITED

ABN 62 129 445 398

Sydney Level 35 One International Towers 100 Barangaroo Avenue Sydney NSW 2000 02 8046 7411 sydney@adwjohnson.com.au

Central Coast 5 Pioneer Avenue Tuggerah NSW 2259 02 4305 4300 Hunter Region 7/335 Hillsborough Road, Warners Bay NSW 2282 02 4978 5100

coast@adwjohnson.com.au

hunter@adwjohnson.com.au

Stormwater Management Report

Proposed Multi Use Development

Property:

Lot 1 DP1215257 795 Medowie Road, Medowie

Applicant:

Date:

November 2019

PORT STEPHENS COUNCIL This document relates to Development Consent No.

16-2019-445-1

and is subject to conditions as shown on that Consent

Project Management • Town Planning • Engineering • Surveying Visualisation • Social Impact • Urban Planning

www.adwjohnson.com.au

Document Control Sheet

Issue No.	Amendment	Date	Prepared By	Checked By
Α	Preliminary Issue	July 2019	BS	ВМ
В	Minor Wording	November 2019	BS	ВМ

Limitations Statement

This report has been prepared in accordance with and for the purposes outlined in the scope of services agreed between ADW Johnson Pty Ltd and the Client. It has been prepared based on the information supplied by the Client, as well as investigation undertaken by ADW Johnson and the sub-consultants engaged by the Client for the project.

Unless otherwise specified in this report, information and advice received from external parties during the course of this project was not independently verified. However, any such information was, in our opinion, deemed to be current and relevant prior to its use. Whilst all reasonable skill, diligence and care have been taken to provide accurate information and appropriate recommendations, it is not warranted or guaranteed and no responsibility or liability for any information, opinion or commentary contained herein or for any consequences of its use will be accepted by ADW Johnson or by any person involved in the preparation of this assessment and report.

This document is solely for the use of the authorised recipient. It is not to be used or copied (either in whole or in part) for any other purpose other than that for which it has been prepared. ADW Johnson accepts no responsibility to any third party who may use or rely on this document or the information contained herein.

The Client should be aware that this report does not guarantee the approval of any application by any Council, Government agency or any other regulatory authority.

Executive Summary

ADW Johnson has been commissioned by Mavid Properties Pty Ltd to prepare a Stormwater Management Report for the proposed multi use development of Lot 1 in DP 1215257, known as 795 Medowie Road, Medowie.

The proposed stormwater system has been designed to safely and efficiently convey the minor and major flows generated by the proposed development to the existing downstream stormwater infrastructure.

In accordance with Port Stephens Council's requirements, stormwater detention has been provided to ensure that the post developed peak discharges are attenuated back to predeveloped levels. As the development is to be a Torrens title development, detention tanks have been provided within each of the proposed lots with a total detention volume of 159 m³ being required.

A treatment train process of litter baskets and filtration cartridges have been designed to effectively reduce the nutrients and gross pollutants from stormwater runoff from the proposed development.

An erosion and sedimentation control plan will be implemented to minimise the risk of erosion to disturbed areas and limit the transport of sediments from the development site to the receiving waters during construction.

The SWMP for the proposed development meets all of the objectives and requirements outlined in Port Stephens Council's DCP.

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	2
2.1 2.2		
3.0	COUNCIL REQUIREMENTS	4
3.1 3.2 3.3 3.4	STORMWATER QUALITY	4 4
4.0	CONCEPT STORMWATER DESIGN	5
5.0	WATER QUANTITY	6
5 5.2 5	5.1.1 Rainfall Data 5.1.2 DRAINS Parameters CATCHMENTS 5.2.1 Pre-Developed Catchment 5.2.2 Post Developed Catchment ONSITE DETENTION (OSD) TANKS RESULTS	
6.0	WATER QUALITY	10
6.1 6.2 6	5.2.1 Catchment Data	10
7.0	EROSION AND SEDIMENTATION CONTROL	13
8.0	CONCLUSION	14

EXHBITS

Existing Site Plan
Proposed Development Plan
Erosion & Sediment Control Plan
OSD Tank Plan & Section

APPENDICES

Appendix A RAFTS MODEL
Appendix B WATER QUALITY INFORMATION
Appendix C MUSIC MODEL

1.0 Introduction

ADW Johnson has been commissioned by Mavid Properties Pty Ltd to prepare a Stormwater Management Report for the proposed multi use development of Lot 1 in DP 1215257, known as 795 Medowie Road, Medowie.

This report addresses the stormwater impact of the proposed development and has been prepared to accompany a Development Application (DA) for the proposed development.

This report documents the proposed stormwater system required to efficiently and effectively capture and convey stormwater from the proposed development and ensure there is no adverse effects from the proposed development on any downstream properties or infrastructure.

This report also details the design of onsite detention and water quality treatments for the development.

2.0 Site Description

The subject site, as shown in **Figure 1**, is identified as Lot 1 in DP 1215257 and is approximately 1.2ha in size. The site is bounded by existing commercial development to the south, Medowie Road to the east, Muir Street to the north and Peppertree Road to the west.

It is noted that the portion of the lot fronting Medowie Road is subject to a separate DA and stormwater management as this parcel will be considered within its own application.

Figure 1 – Proposed Development Site (Source: Sixmaps)

2.1 TOPOGRAPGHY AND EXISTING INFRASTRUCTURE

The site is primarily cleared and consists largely of maintained grasses with some smaller trees and shrubs dotted throughout the site. There are currently no existing structures contained within the site.

The site generally slopes east to west at slopes of approximately 4-5% with a steeper batter in the order of 30% present along the western boundary. Runoff generated by the site currently sheet flows to a drainage swale along the top of the western batter where it is captured via stormwater pit and conveyed to the existing stormwater infrastructure in Peppertree Road. It is proposed to connect the developments drainage infrastructure to the existing stormwater system within Peppertree Road.

The existing site topography and infrastructure can be seen in **Exhibit 1**.

2.2 PROPOSED DEVELOPMENT

The proposed development will transform the subject site into a mixed-use commercial development site consisting of a number of commercial facilities and associated car parking.

As part of the development it is proposed to split the subject site into a number of Torrens title lots. Accordingly, each of the individual lots will be required to provide their own stormwater detention and water quality treatment prior to runoff leaving the individual lots.

To enable each lot to drain to the public drainage system in Peppertree Road, a trunk stormwater drainage network has been provided by Port Stephens Council within the main east west access road. The location and design of this main has been coordinated with ADW Johnson to ensure conformity with the future development design. The proposed Torrens lots will each discharge into this trunk drainage line.

In addition to providing a connection for each of the proposed lots, the trunk drainage system also caters for the existing lots fronting Medowie Road. As such, the existing lots are not catered for within the modelling outlined in this report.

The proposed development can be seen in **Exhibit 2**.

3.0 Council Requirements

Port Stephens Council outlines the engineering requirements for stormwater management within the Port Stephens Development Control Plan 2014. Parts B4 and B5 of the DCP relate specifically to drainage, flooding and water quality.

3.1 CONCEPT STORMWATER DESIGN

A concept stormwater design is required to demonstrate that stormwater runoff generated by the development can be effectively and efficiently conveyed from the subject site to the existing downstream drainage infrastructure.

3.2 STORMWATER QUANTITY

To ensure that there is no adverse impact on downstream properties or infrastructure, the post development peak flow from the proposed development shall not exceed the predevelopment peak flow for a number of storm events up to and including the 1% AEP.

3.3 STORMWATER QUALITY

The stormwater drainage system must effectively remove the nutrients and gross pollutants from the site prior to the runoff entering the existing downstream infrastructure.

The guidelines for stormwater quality treatment objectives are expressed as mean annual reductions of pollutant loads. The target objectives for developments within the PSC LGA are shown in **Table 1** below.

Table 1 – Post Development Water Quality Targets

Pollutant	Stormwater Treatment Objectives
Suspended Solids	90% retention of the average annual load
Total Phosphorus	60% retention of the average annual load
Total Nitrogen	45% retention of the average annual load
Gross Pollutants	90% reduction of litter and vegetation larger than 5mm

It is however noted that the proposed development is within Hunter Water's drinking water catchment and is therefore required to provide a Neutral or Beneficial Effect (NorBE) in relation to water quality.

In accordance with PSC's DCP the proposed development will provide a NorBE or comply with PSC stripping targets, depending on which provides the best environmental outcome.

3.4 EROSION AND SEDIMENTATION CONTROL

Erosion and sedimentation control measures need to be implemented during any construction activities to minimise the risk of erosion of disturbed areas and limit the transport of sediments from the construction site to downstream drainage infrastructure.

4.0 Concept Stormwater Design

A stormwater drainage concept plan has been prepared to demonstrate how the runoff generated by the proposed development is captured and conveyed to the existing downstream stormwater infrastructure.

The pit and pipe network will generally be designed to cater for the minor storm event without any surcharging within the system and minimising flow widths and ponding.

The carpark will be graded to ensure major flows (1% AEP) are contained within the carpark and safely conveyed from the subject site to Peppertree Road without impacting the proposed buildings or any existing private property downstream of the subject site.

In order to adequately attenuate post developed peak flows back to pre-developed levels, it is proposed to provide underground OSD tanks within each lot.

Water quality treatment will be provided within each lot through the provision of litter baskets and proprietary "Stormfilter" cartridges provided within the OSD Tanks.

The concept stormwater design can be seen in **Exhibit 2**.

5.0 Water Quantity

To ensure there are no adverse impacts on downstream properties and stormwater infrastructure, the stormwater system will be designed to ensure that the post-development peak flows leaving the site are less than the existing peak flows for the 1EY, 20%, 10% and 1% AEP design storm events.

To ensure the post developed peak flows are attenuated back to pre-developed levels, OSD tanks are to be provided as part of the development on each individual lot.

5.1 MODELLING

The quantity of required storage to reduce the post developed discharge from the site to less than or equal to the existing discharge for various storm events was analysed using the 'DRAINS' software, which uses the runoff routing method.

The DRAINS model was set up in accordance with AR&R 2019. The following sections outline the parameters adopted in the DRAINS model. A screenshot of the DRAINS model can be seen in Appendix A.

5.1.1 Rainfall Data

The IFD rainfall data adopted within the model was sourced from the Bureau of Meteorology website, using the online IFD data tool.

5.1.2 DRAINS Parameters

The parameters adopted in the DRAINS model were based upon experience on similar sites and guidance provided in AR&R 2019. The adopted parameters can be seen in **Table 2** below.

Table 2 – DRAINS Parameters

Condition	Depression Storage (mm)
Paved (Impervious)	1
Supplementary	0
Grassed (Pervious)	5
Soil Type	3

5.2 CATCHMENTS

Catchments were derived from a combination of detailed survey and the proposed layout. To ensure each lot only detains what it is required too, pre developed catchments for each lot were assumed to be the same area as the post developed catchments.

5.2.1 Pre-Developed Catchment

The pre developed catchments were derived from a combination of the detailed survey and the proposed layout.

The catchment data used in the pre developed model can be seen in **Table 3** below whilst the pre developed catchments can be seen in **Exhibit 1**.

Table 3 - Pre-Developed Catchment Parameters

Catchment	Area (ha)	% Impervious
1	0.36	5
2	0.24	5
3	0.22	5
4	0.40	5

5.2.2 Post Developed Catchment

The post developed catchment parameters were measured based upon the proposed layout and concept grading. The catchment data used in the post developed model can be seen in **Table 4** below whilst the post developed catchment can be seen in **Exhibit 2**.

Table 4 - Post Developed Catchment Parameters

Catchment	Area (ha)	% Impervious
1	0.32	90
1A*	0.04	100
2	0.24	85
3	0.22	80
4	0.32	70
4A*	0.09	50

^{*} Catchments 1A and 4A bypass the proposed detention tanks.

5.3 ONSITE DETENTION (OSD) TANKS

As mentioned in section 5, it is proposed to provide an OSD tank underneath the proposed carpark in each Torrens title lot. Using the DRAINS model with the parameters listed in the sections above, the proposed tank was sized and concept outlet configurations designed to enable modelling of the development to demonstrate that the post developed peak flows are adequately attenuated back to pre-developed levels.

Due to the differing parameters of each lot, tanks were sized accordingly resulting in four (4) separate tanks.

The details for the proposed detention tanks are shown in **Table 5-8** below, whilst an indicative OSD tank can be seen in **Exhibit 4**.

Table 5 – Detention Tank Data – CATCHMENT 1

Tank Parameter	Detail
Tank Dimensions	4m W x 12m L x 1.0m D
	Pipe – DN150 with 0.14m orifice plate – IL RL 0m*
Outlet Controls	Cutout – 0.10m H x 0.55m L - IL RL 0.56m*
	Weir – 0.60m length - IL RL 0.75m*
Total Storage at 1% AEP Stage	48 m³

^{*} Invert levels relative to tank invert. AHD levels to be provided once detail design complete

Table 6 – Detention Tank Data – CATCHMENT 2

Tank Parameter	Detail
Tank Dimensions	4m W x 10m L x 1.0m D
	Pipe – DN150 with 0.12m orifice plate – IL RL 0m*
Outlet Controls	Cutout – 0.10m H x 0.35m L - IL RL 0.5m*
	Weir – 0.4m length - IL RL 0.75m*
Total Storage at 1% AEP Stage	40 m³

^{*} Invert levels relative to tank invert. AHD levels to be provided once detail design complete

Table 7 - Detention Tank Data - CATCHMENT 3

,,, , , , , , , , , , , , , , , , , ,	
Tank Parameter	Detail
Tank Dimensions	3.5m W x 10m L x 1.0m D
	Pipe – DN150 with 0.12m orifice plate – IL RL 0m*
Outlet Controls	Cutout – 0.10m H x 0.35m L - IL RL 0.5m*
	Weir – 0.30m length - IL RL 0.8m*
Total Storage at 1% AEP Stage	35 m³

^{*} Invert levels relative to tank invert. AHD levels to be provided once detail design complete

Table 8 – Detention Tank Data – CATCHMENT 4

Tank Parameter	Detail
Tank Dimensions	4m W x 9m L x 1.0m D
	Pipe – DN150 with 0.14m orifice plate – IL RL 0m*
Outlet Controls	Cutout – 0.10m H x 0.55m L - IL RL 0.54m*
	Weir – 0.54m length - IL RL 0.8m*
Total Storage at 1% AEP Stage	36 m³

^{*} Invert levels relative to tank invert. AHD levels to be provided once detail design complete

5.4 RESULTS

The pre and post developed peak flows were calculated using the DRAINS model for the 1EY, 20%, 10% and 1% AEP storm events. A summary of the modelling results can be seen in **Tables 9 & 10** below.

Table 9 - Pre vs post (no detention)

Storm Event (ARI)	Pre-Do	evelopm (m³	ent Peak 3/s)	Flow		evelopn out Dete		
	Catchment				Catch	nment		
	1	2	3	4	1	2	3	4
1	0.035	0.024	0.022	0.040	0.073	0.045	0.043	0.066
5	0.094	0.064	0.058	0.105	0.131	0.085	0.079	0.129
10	0.135	0.092	0.083	0.151	0.166	0.110	0.101	0.175
100	0.242	0.164	0.150	0.270	0.290	0.193	0.177	0.304

Table 10 Pre vs post with detention

Storm Event (ARI)	Pre-	Develo Flow	pment F (m³/s)	'eak	Post-Development Peak Flow With Detention (m³/s)			
	Catchment				Catchment			
	1	2	3	4	1	2	3	4
1	0.035	0.024	0.022	0.040	0.034	0.021	0.021	0.037
5	0.094	0.064	0.058	0.105	0.091	0.060	0.057	0.103
10	0.135	0.092	0.083	0.151	0.129	0.078	0.072	0.137
100	0.242	0.164	0.150	0.270	0.240	0.162	0.147	0.269

From the results, it can be seen that the inclusion of OSD tanks on each individual lot with the parameters outlined in Section 5.3, ensures that the post developed flows are adequately attenuated back to pre-developed levels. A screenshot of the DRAINS model can be seen in **Appendix A**.

6.0 Water Quality

The proposed stormwater system, as detailed in Section 5, uses a combination of pit and pipe networks and water quality devices to convey stormwater runoff from the site. It is intended to use a combination of treatment devices within the drainage system to remove nutrients and sediments from the stormwater prior to the runoff leaving the site.

6.1 TREATMENT DEVICES

The stormwater design for the proposed subdivision will consist of a combination of conveyance and end of line controls to treat the stormwater runoff generated on the site.

Conveyance

It is proposed to provide an Ecosol (or approved equivalent) Litter Baskets directly within all stormwater pits to capture litter and other gross pollutants. Further information regarding the Litter Baskets can be seen in **Appendix B**.

End of Line

It is proposed to provide Stormwater 360 "Stormfilter Cartridges" (or approved equivalent) within the proposed detention tanks to provide end of line treatment.

Further information regarding the Stormwater 360 treatment devices can be seen in **Appendix B.**

6.2 MODELLING

The effectiveness of the proposed treatment train was modelled using the Model for Urban Stormwater Improvement Conceptualisation (MUSIC). MUSIC is well regarded as industry best practice for analysis of the effectiveness of treatment mechanisms on the quality of stormwater runoff from a development site of this size.

The MUSIC model parameters were adopted using the MUSIC-LINK feature, whilst treatment node parameters were based upon a combination of Council's guidelines and information provided by individual device providers.

6.2.1 Catchment Data

To accurately model the pollutant loads generated by the proposed development, the catchments were split into multiple sub catchments representing roof, carpark and open space areas. Catchment data for each lot can be seen in **Table 11** below.

Stormwater Management Report - Proposed Multi Use Development 795 Medowie Road, Medowie (Ref: 190514)

Table 11 - Sub catchment areas

Catchment	Sub catchment	Total Area (ha)	Impervious %
	Roof	0.04	100
1	Carpark	0.235	100
	Open Space	0.04	10
	Roof	0.0	100
1A	Carpark	0.04	100
	Open Space	0.0	10
	Roof	0.08	100
2	Carpark	0.12	100
	Open Space	0.05	10
	Roof	0.07	100
3	Carpark	0.1	100
	Open Space	0.06	10
	Roof	0.08	100
4	Carpark	0.13	100
	Open Space	0.11	10
	Roof	0.0	100
4A	Carpark	0.04	100
	Open Space	0.05	10

6.3 RESULTS

As mentioned in Section 3.3, as the proposed development is within the Hunter Water drinking catchment, it is required to provide a NorBE or meet council's stripping targets, whichever is greater.

The MUSIC model was set up and run using the parameters mentioned above to analyse the effectiveness of the treatment train and to determine if it meets the required targets.

A summary of the modelling results can be seen in **Tables 12 - 13** below.

Table 12 – Pre developed vs Post developed - Site Pollutant Loads

Pollutant	Pre developed	Post developed
Total Suspended Solids (kg/yr)	951	250
Total Phosphorus (kg/yr)	1.66	0.90
Total Nitrogen (kg/yr)	12.5	12.5
Gross Pollutants (kg/yr)	37.9	1.38

Table 13 – Site Pollutant Loads and Reductions

Pollutant	Source Load	Residual Load	Modelled Reduction (%)	Target (%)
Total Suspended Solids (kg/yr)	2740	250	90.9	90
Total Phosphorus (kg/yr)	4.93	0.902	81.7	60
Total Nitrogen (kg/yr)	26.9	12.5	53.5	45
Gross Pollutants (kg/yr)	279	1.38	99.5	90

As can be seen from **Table 12 and 13** above, the MUSIC modelling indicates that the proposed treatment train not only meets the stormwater quality requirements of Port Stephens Council but also provides a Neutral or Beneficial effect. A screenshot of the MUSIC model can be seen in **Appendix C**.

As mentioned above, a key part of the treatment train is the "Stormfilter Cartridges", which are to be supplied within the detention tanks. A summary of the cartridges required for each tank can be seen in **Table 14** below.

Table 14 – Proposed Stormfilter Cartridges

Catchment	Number of Cartridges	Cartridge Size (mm)
Catchment 1	4	690
Catchment 2	4	690
Catchment 3	3	690
Catchment 4	4	690

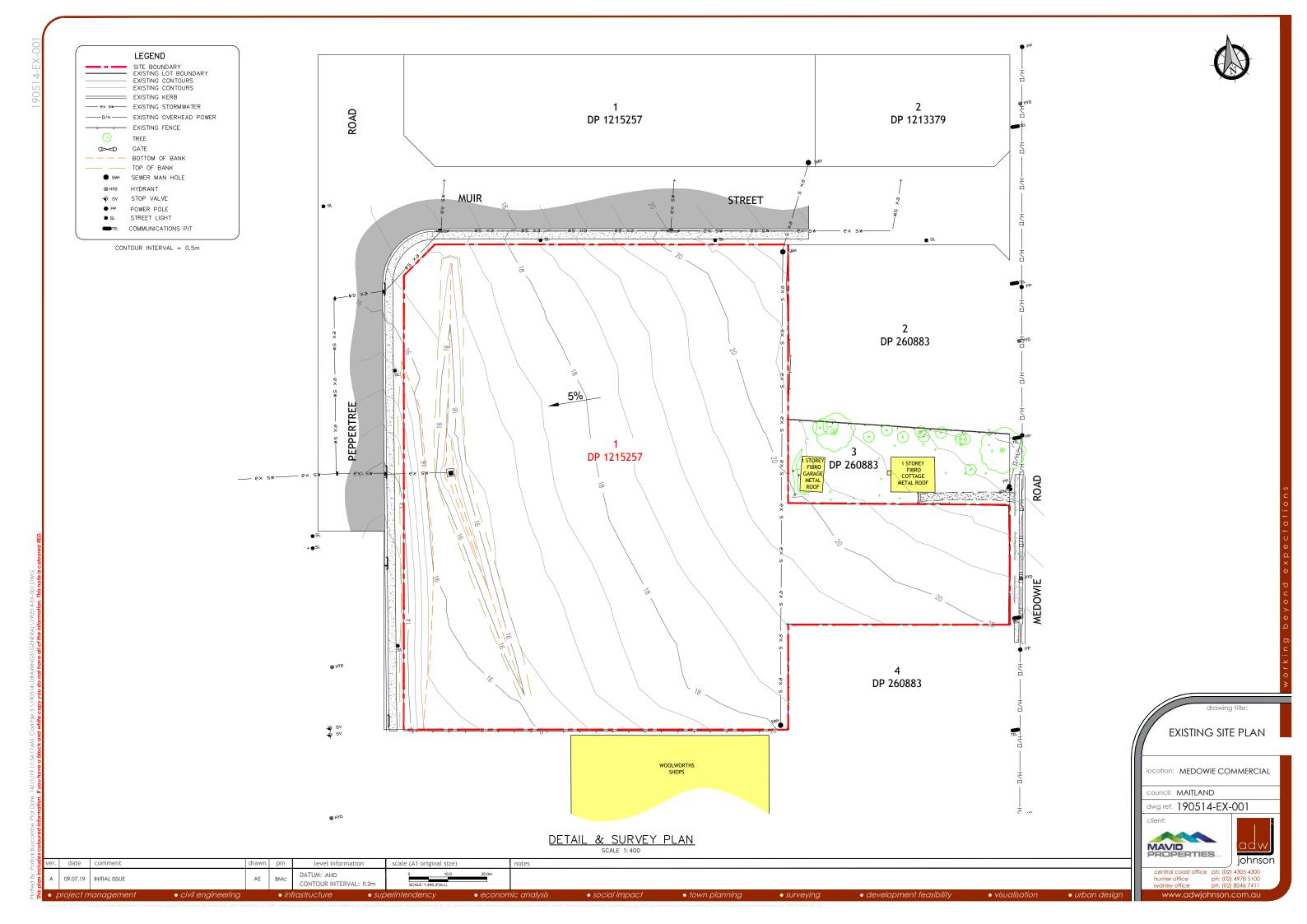
Further details surrounding the Stormfilter cartridges and their inclusion within the detention tanks can be seen in **Exhibit 4**.

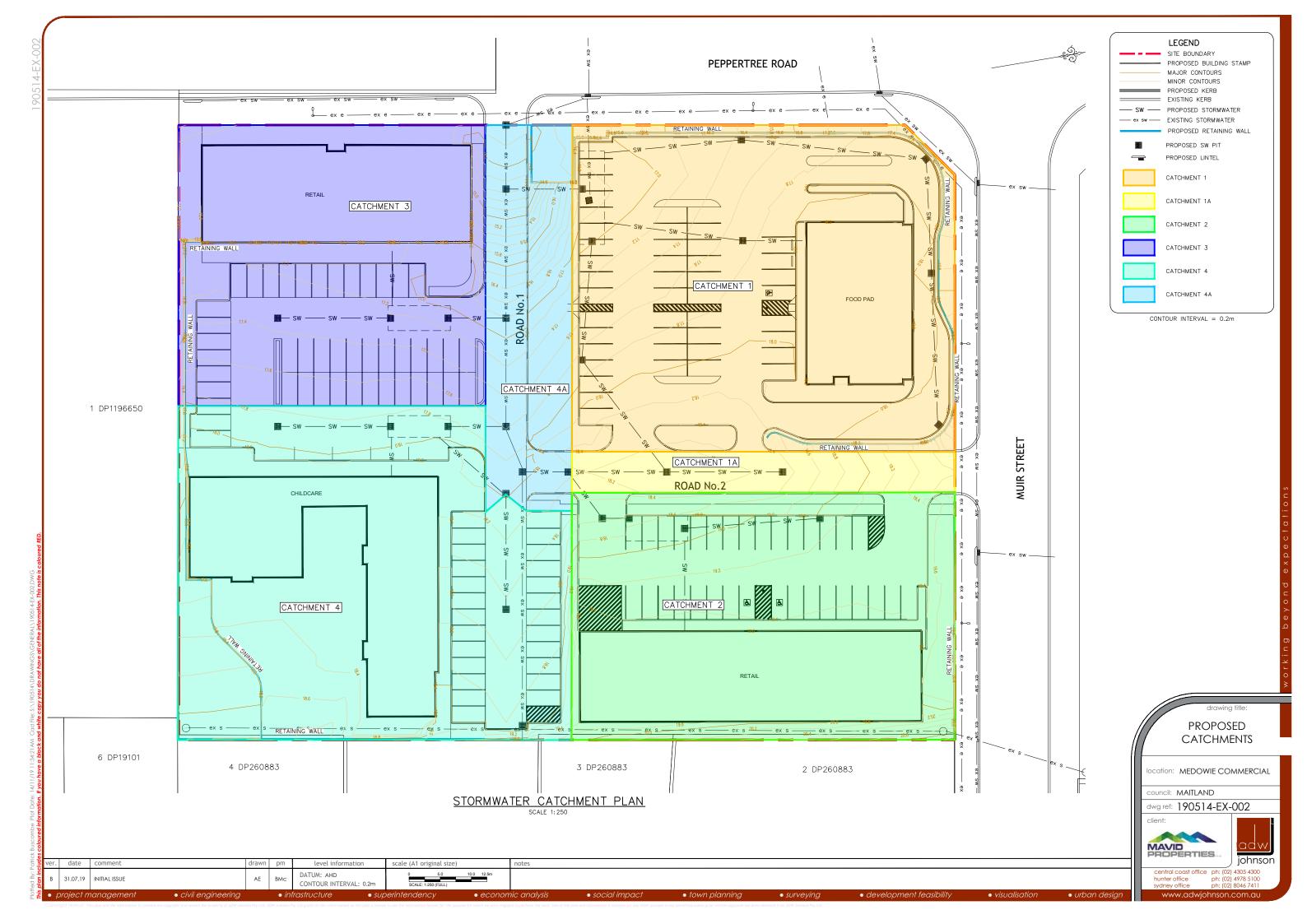
7.0 Erosion and Sedimentation Control

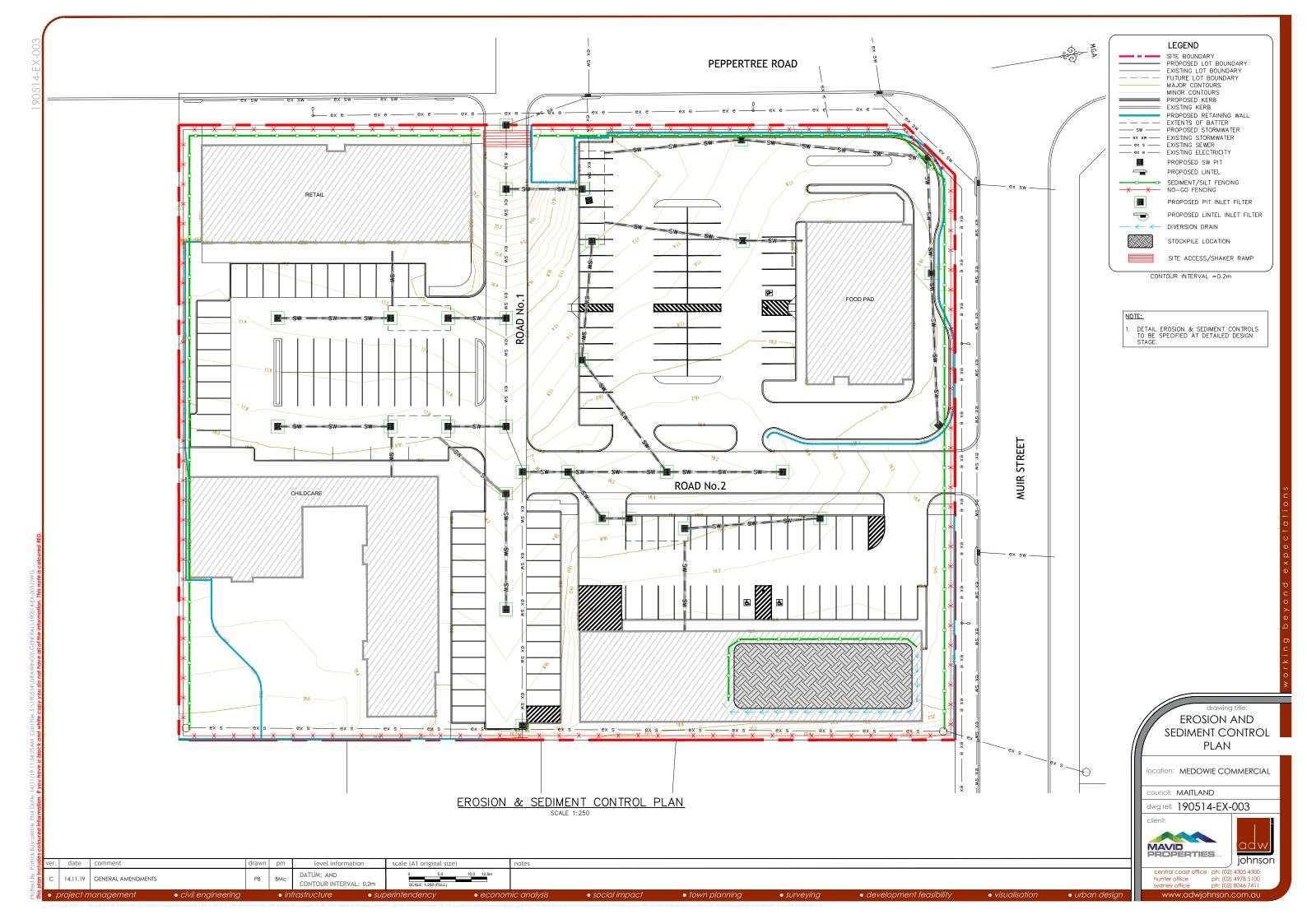
Erosion and sedimentation control measures need to be implemented during construction works to minimise the risk of erosion to disturbed areas and limit the transport of sediments from the construction site to downstream waterways. An Erosion and Sedimentation Control Plan can be seen in **Exhibit 3**. It should be noted that the attached Erosion and Sedimentation Control Plan is indicative only and will be amended during the detailed design and construction phases of the project.

8.0 Conclusion

The proposed stormwater system has been designed to safely and efficiently convey the minor and major flows generated by the proposed development, to the downstream stormwater infrastructure.


Stormwater detention, provided by a number of OSD tanks, has shown that the peak post developed discharges can be adequately attenuated back to pre-developed levels in accordance with PSC requirements.


A treatment train process of litter baskets and filtration cartridges have been designed to effectively reduce the nutrients and gross pollutants from stormwater runoff from the proposed development.


An erosion and sedimentation control plan will be implemented to minimise the risk of erosion to disturbed areas and limit the transport of sediments from the development site to the receiving waters during construction.

Exhibits

r. date comment

A 09.07.19 INITIAL ISSUE

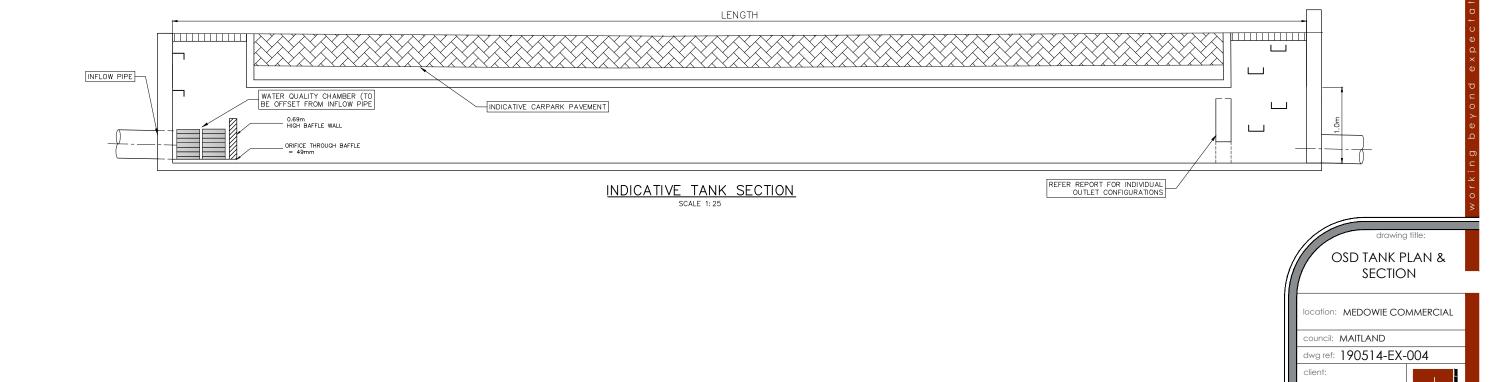
level information

CONTOUR INTERVAL: N/A

DATUM: AHD

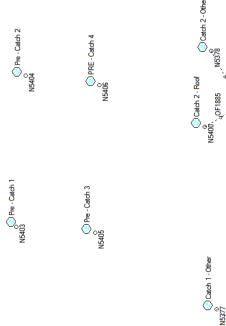
scale (A1 original size)

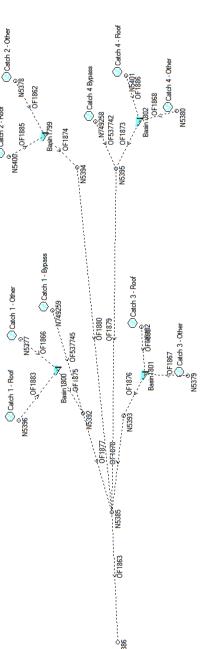
 REFER TO REPORT FOR INDIVIDUAL TANK DIMENSIONS AND DETAILS.


MAVID PROPERTIES...

central coast office ph: (02) 4305 4300 hunter office ph: (02) 4978 5100 sydney office ph: (02) 8046 7411

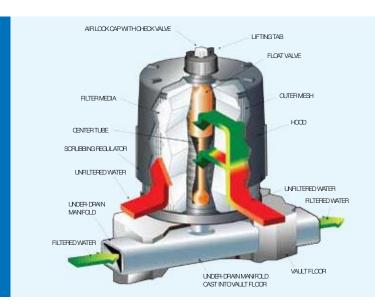
johnson


INDICATIVE OSD TANK
SCALE 1:100



APPENDIX A

DRAINS MODEL



WATER QUALITY INFORMATION

The Stormwater Vanagement StormFilter

Removing the most challenging target pollutants

The Stormwater Management StormFilter is a best management practice (BMP) designed to meet stringent regulatory requirements. It removes the most challenging target pollutants – including fine solids, soluble heavy metals, oil, and total nutrients (inc. soluble) – using a variety of media. For more than two decades, StormFilter has helped clients meet their regulatory needs and through product enhancements the design continues to be refined for ease of use.

Why StomFilter is the best filter available

Superior hydraulics

- External bypass protects treatment chamber from high flows and ensures captured pollutants are not lost during low frequency, high intensity storm events
- Multiple cartridge heights minimises head loss to fit within the hydraulic grade line and shrink system size, reducing installation costs
- Multiple StormFilter configurations in use across the country

Reliable langevity

- One-of-a-kind self-cleaning hood prevents surface blinding, ensures use of all media, and prolongs cartridge life
- Customised maintenance cycles fewer maintenance events compared to similar products, which reduces costs over the lifetime of the system
- 12 years of maintenance experience predictable long-term performance comes standard

Proven performance

- Only filter on the Australian market tested within Australia achieving best practice guidelines, for TSS, TP and TN
- Qualifies for a minimum 2 EMI 5 Green star credits
- Achieve water quality goals with confidence

 easy approval speeds development

 assessment process
- 8th generation product design refined and perfected over two decades of research and experience

Maximising your land use and development profitability

StormFilter systems are utilised in below ground systems. The advantages this offers over above ground systems includes:

- Land space saving that enable an increase in development density and reduce sprawl
- The potential to add car parking, increase building size, and develop out parcels

In addition, StormFilter's compact design reduces construction and installation costs by limiting excavation.

Media options

Our filtration products can be customised using different filter media to target site-specific pollutants.

A combination of media is often recommended to maximise pollutant removal effectiveness.

PhosphoSorb™ is a lightweight media built from a Perlite-base that removes total phosphorus (TP) by adsorbing dissolved-P and filtering particulate-P simultaneously.

Perlite is naturally occurring puffed volcanic ash. Effective for removing TSS, oil and grease.

Zeolite is a naturally occurring mineral used to remove soluble metals, ammonium and some organics.

GAC (Granular Activated Carbon)

has a micro-porous structure with an extensive surface area to provide high levels of adsorption. It is primarily used to remove oil and grease and organics such as PAHs and phthalates.

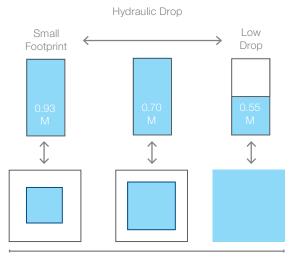
	PhosphoSorb	Perlite	ZPG	Zeolite	GAC
Sediments	٠	•	•		
Oil and Grease	•	•	•		
Soluble Metals	•		•	•	
Organics			•	•	•
Nutrients	•	•	•	•	•
Total Phosphorus	•		•		

Note: Indicated media are most effective for associated pollutant type. Other media may treat pollutants, but to a lesser degree.

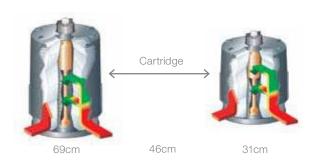
ZPG™ media, a proprietary blend of zeolite, perlite, and GAC.

Cartridge options

With multiple cartridge heights available, you now have a choice when fitting a StormFilter system onto your site.


The 69cm cartridge provides 50% more treatment than the previously standard 46cm cartridge, which enables you to meet the same treatment standards with fewer cartridges, and via a smaller system.

If you are limited by hydraulic constraints, the low drop cartridge provides filtration treatment with only 0.55m of headloss.


Cartridge flow rates

Contrides Tree	Hydraulic	Treatment Capacity (I/sec)		
Cartridge Type	Drop	0.7 l/s/m²	1.4 l/s/m²	
StormFilter 69cm	0.93 m	0.71	1.42	
StormFilter 46cm	0.70 m	0.47	0.95	
StormFilter Low Drop	0.55 m	0.32	0.63	

Selecting cartridge height

Footprint/system size

Configurations and applications

The StormFilter technology can be configured to meet your unique site requirements. Here are a few of the most common configurations, however many other configurations are available. A Stormwater360 engineer can assist you evaluate the best options for your site or you can find out more by downloading the StarmFilter Configuration Guide from www.stormwater360.com.au

Upstream treatment configurations

The following suite of StormFilter configurations are easily incorporated on sites where WSUD is recommended. These low-cost, low-drop, point-of-entry systems also work well when you have a compact drainage area.

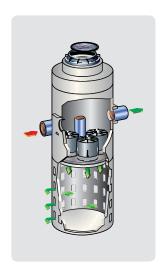
GullyPit StormFilter

Combines a gullypit, a high flow bypass device, and a StormFilter cartridge in one shallow structure.

- · Treats sheet flow
- Uses drop from the inlet grate to the conveyance pipe to drive the passive filtration cartridge
- No confined space required for maintenance

Gully inlet

- · Accommodates kerb inlet openings from 900 to 3000mm long
- Uses drop from the kerb inlet to the conveyance pipe to drive the passive filtration cartridges


Linear grate

- · Can be designed to meet volume based sizing requirements
- Can be installed in place of and similar to a typical gullypit
- No confined space entry required for maintenance
- Accommodates up to 29 StormFilter cartridges

Infiltration/retrofit configuration infiltration

- Provides treatment and infiltration in one structure
- Available for new construction and retrofit applications
- Easy to install
- Re-charge groundwater and reduces run-off

Roof runoff treatment configuration

Down pipe

- Easily integrated into existing gutter systems to treat pollution from rooftop runoff
- Fits most downpipe configurations and sizes; single or dual-cartridge models available
- Treats up to 1300m² of rooftop area per dual-cartridge system

Downstream treatment configurations

Conventional stormwater treatment involves collecting, conveying and treating stormwater runoff with an end-of-pipe treatment system before discharging off-site. StormFilter configurations suitable for these applications are listed below and can be engineered to treat a wide range of flows.

Peak diversion

- Provides off-line bypass and treatment in one structure
- Eliminates material and installation cost of additional structures to bypass peak flows
- Reduces the overall footprint of the treatment system, avoiding utility and right-of-way conflicts
- · Internal weir allows high peak flows with low hydraulic head losses
- Accommodates large inlet and outlet pipes (up to 900mm) for high flow applications

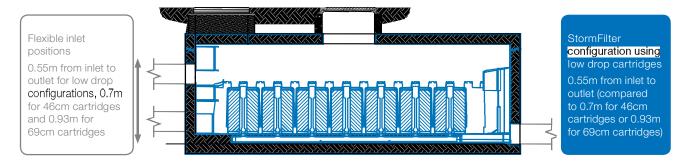
Vault/manhde

- Treats small to medium sized sites
- Simple installation arrives on-site fully assembled
- May require off-line bypass structure

Hghflow

- Treats flows from large sites
- · Consists of large, precast components designed for easy assembly on-site
- · Configurations available, include, Panel Vault and Cast-In-Place

Vdume


- Meets volume-based stormwater treatment regulations
- · Captures and treats specific water quality volume (WQv)
- · Provides treatment and controls the discharge rate
- Can be designed to capture all, or a portion, of the WQv

Filtration for low drop sites

Designing for limited drop

In some cases, site constraints limit the hydraulic drop that is available to drive the passive filtration cartridges. Following are a variety of solutions to either create the required drop or work around the limited drop without impacting the performance of the system.

Solutions for Low Drop Sites

Site modifications

Reduce pipe slope

Use an alternate pipe material with a lower Manning's n value for a portion of the site and reduce the pipe slope.

Reduce pipe cover

Use controlled density fill (CDF) at the front-end of the conveyance system to minimise pipe cover and raise the conveyance system. CDF, a method of pouring concrete with fine aggregate (sand vs. gravel) around pipe, allows the use of most pipe materials with limited cover.

Drain inlet treatment

Substitute several shallow inlet configurations for the single end-of-pipe system. Shallow options include the Catchpit/Gullypit StormFilter, CurbInlet StormFilter, Manhole StormFilter and the Linear StormFilter. These systems still require the normal drop (0.7m for 46cm cartridges) but utilise the drop into the conveyance system to drive the cartridges.

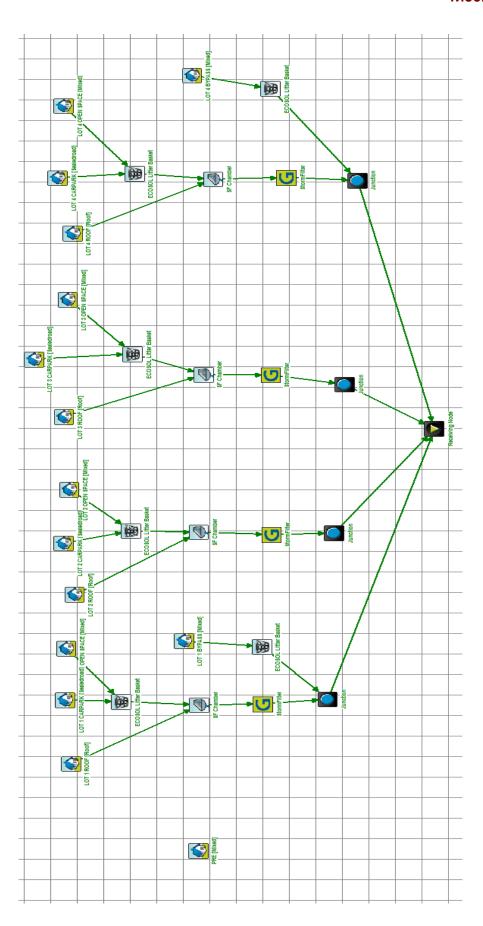
Provide pumping system

Stormwater 360 offers the Integrated Pumping System (IPS), which can be designed in tandem with filtration system sizing.

Treatment system modifications

Use low drop cartridges

The StormFilter can be configured with low drop cartridges that activate at 31cm, reducing the overall head loss to only 0.55m, compared to 0.7m for the 46cm cartridge or 0.93m for the 69cm cartridge.


Surcharge the inlet pipe

Backing-up water into the conveyance system can create the necessary drop to drive the StormFilter cartridges. This will affect the HGL and increase the volume of water required to activate the cartridges, which could have a detrimental effect on system longevity. The following design modifications mitigate these risks:

- Confer with a Stormwater360 design engineer before surcharging the inlet pipe
- Verify this is an acceptable practice in your local jurisdiction
- Modify the overall system design to accommodate the increased HGL
- Calculate the additional treatment volume and consider using more cartridges

MUSIC MODEL

PLANNING DEVELOPMENT PROPERTY

KDC PTY LITD ABN 61 148 085 492
(02) 4940 0442
reception@kdc.com.au
www.kdc.com.au
Suite 2B, 125 Bull Street
Newcastle West NSW 2302

PORT STEPHENS COUNCIL
This document relates to

This document relates to Development Consent No.

16-2019-445-1

and is subject to conditions as shown on that Consent

CRIME PREVENTION THROUGH ENVIRONMENTAL DESIGN STATEMENT

Introduction

The purpose of this report is to identify and assess crime risk associated with the proposed mixed use development located at 795 Medowie Road, Medowie NSW 2318 (Lot 1 DP1215257).

Site Analysis

The site is located on the south eastern corner of the intersection connecting Peppertree Road with Muir Street. The site is surrounded by a mix of commercial and residential land uses as well as vacant, undeveloped land. Medowie town centre is located to the south west of the site and contains a mix of commercial and food and drink premises. Low density residential land is generally located to the north and south of the site with higher density residential to the east across Medowie Road. Land to the immediate north west is currently vacant.

Crime Opportunity

Given the nature of a mixed use commercial development there is a potential increased opportunity for crimes or anti-social behavior (e.g. vandalism, graffiti, litter, excessive noise) at the site, particularly during night time hours.

Crime Prevention through Environmental Design

Crime Prevention through Environmental Design (CPTED) is a crime prevention strategy that focuses on the planning, design and structure of cities and neighbourhoods. It reduces opportunities for crime by using design and place management principles that reduce the likelihood of essential crime ingredients from intersecting in time and space.

CPTED aims to influence the design of buildings and places by:

- Increasing the perception of risk to criminals by increasing the possibility of detection, challenge and capture;
- Increasing the effort required to commit crime by increasing the time, energy or resources which need to be expended;
- Reducing the potential rewards of crime by minimising, removing or concealing 'crime benefits'; and
- Removing conditions that create confusion about required norms of behaviour.

Source: Department of Planning and Environment formerly the Department of Urban Affairs and Planning, 2001.

CPTED employs four key strategies including surveillance, access control, territorial reinforcement and space/activity management.

In accordance with the four key strategies, the principals of Crime Prevention and Public Safety are addressed in relation to the Medowie proposal below:

1. Surveillance

Natural surveillance limits the opportunity for crime by increasing awareness that people can be seen. Potential offenders therefore feel increased scrutiny and limitations on their escape routes.

Good surveillance is achieved by:

- (a) Clear sightlines between private and public spaces;
- (b) Effective lighting of public places; and
- (c) Landscaping that makes places attractive, but not a place to hide.

The design of the development includes natural surveillance by the strategic placement of physical features to maximise visibility. The specific design elements include:

- Clear sight lines are provided allowing maximum surveillance of the vehicular entry and exit point(s) for the site;
- The maintenance levels for paths of travel will comply with AS1680;
- Installation of 24/7 video surveillance (CCTV) within the development;
- Fire exit doors will be alarmed (where required);
- Appropriate day and night lighting installed to eliminate any potential problem areas and to ensure security cameras operate effectively (i.e. easy facial recognition at 15m);
- No 'hidden spots' created within the site by siting of buildings allowing optimal surveillance over the internal (central) areas of the site; and
- The design of the car park areas encourages passive surveillance and incorporates active measures such as lighting and signage.

2. Access Control

Access control limits the opportunity for crime by taking steps to clearly differentiate between public space and private space.

Good access control for the movement of people is achieved by:

- (a) Landscapes and physical locations that channel and group pedestrians into target areas;
- (b) Public spaces that attract rather than discourage people from gathering; and
- (c) Restricted access to internal or high risk areas (e.g. car parks).

The site has been designed to encourage natural access and control flow of people by:

- Appropriate signage for both customer and delivery/service vehicles;
- Lighting of pedestrian pathways and access routes to Australian Standard (AS 1158); and
- Clear movement for pedestrians throughout the car park and between the elements of the development to minimise conflict with vehicles.

3. Territorial Reinforcement (Community Ownership)

Territorial reinforcement promotes social control through increased definition of space and improved proprietary concern, i.e. it makes the normal user feel safe and makes the potential offender aware of a substantial risk of apprehension or scrutiny. By using buildings, fences, pavement, signs, lighting and landscape to express ownership and define public, semi-public and private space, natural territorial reinforcement occurs.

Community ownership (territorial reinforcement) makes people feel comfortable in a place and is achieved by:

- (a) A design that encourages people to gather in public spaces;
- (b) Having a clear transition between boundaries of public and private spaces; and

(c) Having clear design cues as to who is to use the space and what it is to be used for.

The proposed development has been designed to clearly delineate public space. This will ensure that any potential intruders will stand out and be easily identified. Elements of territorial reinforcement included into the design and management of the proposal include:

- The premises and landscaping will be maintained such that it communicates an alert and active presence occupying the space;
- Clearly defined boundaries of the site;
- Pedestrian line markings provided within the development;
- Provision of signage that will assist in controlling activities and movements throughout the premises (knowing how and where to enter/exit and find assistance can impact perceptions of safety, victim vulnerability and crime opportunity);
- Providing appropriate landscaping treatments within the development; and
- Display of security system signage at access points.

4. Space Management

Space management strategies such as site maintenance, target hardening, and target removal are proposed for the development proposal.

Site Maintenance

Management and maintenance are closely linked to a sense of ownership. Good management and maintenance of a place, or property, is often the difference between it seeming safe or unsafe and it being cared for or uncared for. Deterioration indicates less control by the users of a site and indicates a greater tolerance of disorder.

It is in the interest of the future operators to maintain the site to a high standard so that each premises can operate at their optimal level and attract as much usage as possible. Routine maintenance checks and reporting will be carried out by personnel employed at the development to ensure the property is maintained and to reduce the likelihood of crime or vandalism. Furthermore, robust materials are proposed to be used where possible including graffiti resistant materials and fixed rubbish bins to mitigate against potential malicious damage. Any vandalism or graffiti will be repaired and removed promptly by staff or contractors.

As stated above, the proposed landscaping is designed not to create pockets or enclosures whereby victims could be entrapped but to help integrate the built form into the site and surrounds. The proposed landscaping scheme avoids vegetation that impedes the effectiveness of outdoor lighting and allows for good sightlines without areas for concealment.

Target Hardening and Removal

Target hardening and removal is the use of 'design out crime' strategies to make it harder for a crime to be committed and reduces the gains of crime. While this is the most long-established and traditional approach to crime prevention, it can create a 'fortress mentality' and imagery whereby users of the development withdraw behind physical barriers and the self-policing capacity of the built environment is damaged. This is effectively working against CPTED strategies that rely on surveillance, territoriality and positive image management.

The proposal includes the use of some physical barriers associated with target hardening such as security cameras and landscaping in key locations. However, the site allows opportunities for natural surveillance from within the site, with clearly defined boundaries, and allows opportunities for natural access control. The development aims to ensure a safe environment for all users of the facility.

Conclusion

The development of the site for the purposes of a mixed use commercial development has been designed with CPTED principles in mind and incorporates appropriate night lighting, car park design, site and building layout and landscaping as well as security devices such as CCTV cameras to assist in crime deterrence and prevention.

Implementation of the above-mentioned measures into the design of the proposal will create an environment that will dissuade offenders from committing crimes by manipulating the built environment in which those crimes proceed from or occur.

The design is considered to be consistent with the Department of Planning and Environment (former Department of Urban Affairs and Planning) Crime Prevention and the Assessment of Development Applications, 2001.

Yours sincerely

Patrick Quinlan (BURP) (NSW Police Safer by Design Course)

Senior Planner KDC Pty Ltd